This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Magma homomorphism depends only on the operation of structures. (Contributed by AV, 25-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mgmhmpropd.a | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐽 ) ) | |
| mgmhmpropd.b | ⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝐾 ) ) | ||
| mgmhmpropd.c | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| mgmhmpropd.d | ⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝑀 ) ) | ||
| mgmhmpropd.0 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | ||
| mgmhmpropd.C | ⊢ ( 𝜑 → 𝐶 ≠ ∅ ) | ||
| mgmhmpropd.e | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| mgmhmpropd.f | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | ||
| Assertion | mgmhmpropd | ⊢ ( 𝜑 → ( 𝐽 MgmHom 𝐾 ) = ( 𝐿 MgmHom 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmhmpropd.a | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐽 ) ) | |
| 2 | mgmhmpropd.b | ⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝐾 ) ) | |
| 3 | mgmhmpropd.c | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 4 | mgmhmpropd.d | ⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝑀 ) ) | |
| 5 | mgmhmpropd.0 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | |
| 6 | mgmhmpropd.C | ⊢ ( 𝜑 → 𝐶 ≠ ∅ ) | |
| 7 | mgmhmpropd.e | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 8 | mgmhmpropd.f | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | |
| 9 | 7 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) |
| 10 | 9 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) |
| 11 | ffvelcdm | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) | |
| 12 | ffvelcdm | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑦 ) ∈ 𝐶 ) | |
| 13 | 11 12 | anim12dan | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ∧ ( 𝑓 ‘ 𝑦 ) ∈ 𝐶 ) ) |
| 14 | 8 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 15 | oveq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑤 ( +g ‘ 𝐾 ) 𝑦 ) ) | |
| 16 | oveq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑦 ) ) | |
| 17 | 15 16 | eqeq12d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ↔ ( 𝑤 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑦 ) ) ) |
| 18 | oveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑤 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) ) | |
| 19 | oveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑤 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) | |
| 20 | 18 19 | eqeq12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑤 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑦 ) ↔ ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 21 | 17 20 | cbvral2vw | ⊢ ( ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ↔ ∀ 𝑤 ∈ 𝐶 ∀ 𝑧 ∈ 𝐶 ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 22 | 14 21 | sylib | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐶 ∀ 𝑧 ∈ 𝐶 ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 23 | oveq1 | ⊢ ( 𝑤 = ( 𝑓 ‘ 𝑥 ) → ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) 𝑧 ) ) | |
| 24 | oveq1 | ⊢ ( 𝑤 = ( 𝑓 ‘ 𝑥 ) → ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) ) | |
| 25 | 23 24 | eqeq12d | ⊢ ( 𝑤 = ( 𝑓 ‘ 𝑥 ) → ( ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ↔ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) 𝑧 ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 26 | oveq2 | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑦 ) → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) 𝑧 ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) | |
| 27 | oveq2 | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑦 ) → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) | |
| 28 | 26 27 | eqeq12d | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑦 ) → ( ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) 𝑧 ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) ↔ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 29 | 25 28 | rspc2va | ⊢ ( ( ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ∧ ( 𝑓 ‘ 𝑦 ) ∈ 𝐶 ) ∧ ∀ 𝑤 ∈ 𝐶 ∀ 𝑧 ∈ 𝐶 ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 30 | 13 22 29 | syl2anr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 31 | 30 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 32 | 10 31 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 33 | 32 | 2ralbidva | ⊢ ( ( 𝜑 ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 34 | 33 | adantrl | ⊢ ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 35 | raleq | ⊢ ( 𝐵 = ( Base ‘ 𝐽 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | |
| 36 | 35 | raleqbi1dv | ⊢ ( 𝐵 = ( Base ‘ 𝐽 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 37 | 1 36 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 39 | raleq | ⊢ ( 𝐵 = ( Base ‘ 𝐿 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | |
| 40 | 39 | raleqbi1dv | ⊢ ( 𝐵 = ( Base ‘ 𝐿 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 41 | 3 40 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 42 | 41 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 43 | 34 38 42 | 3bitr3d | ⊢ ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 44 | 43 | anassrs | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 45 | 44 | pm5.32da | ⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ) → ( ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 46 | 1 2 | feq23d | ⊢ ( 𝜑 → ( 𝑓 : 𝐵 ⟶ 𝐶 ↔ 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ) ) |
| 47 | 46 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ) → ( 𝑓 : 𝐵 ⟶ 𝐶 ↔ 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ) ) |
| 48 | 47 | anbi1d | ⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ) → ( ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 49 | 3 4 | feq23d | ⊢ ( 𝜑 → ( 𝑓 : 𝐵 ⟶ 𝐶 ↔ 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ) ) |
| 50 | 49 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ) → ( 𝑓 : 𝐵 ⟶ 𝐶 ↔ 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ) ) |
| 51 | 50 | anbi1d | ⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ) → ( ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 52 | 45 48 51 | 3bitr3d | ⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ) → ( ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 53 | 52 | pm5.32da | ⊢ ( 𝜑 → ( ( ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ∧ ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ∧ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
| 54 | 1 3 5 7 | mgmpropd | ⊢ ( 𝜑 → ( 𝐽 ∈ Mgm ↔ 𝐿 ∈ Mgm ) ) |
| 55 | 2 4 6 8 | mgmpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ Mgm ↔ 𝑀 ∈ Mgm ) ) |
| 56 | 54 55 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ↔ ( 𝐿 ∈ Mgm ∧ 𝑀 ∈ Mgm ) ) ) |
| 57 | 56 | anbi1d | ⊢ ( 𝜑 → ( ( ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ∧ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( ( 𝐿 ∈ Mgm ∧ 𝑀 ∈ Mgm ) ∧ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
| 58 | 53 57 | bitrd | ⊢ ( 𝜑 → ( ( ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ∧ ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( ( 𝐿 ∈ Mgm ∧ 𝑀 ∈ Mgm ) ∧ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
| 59 | eqid | ⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) | |
| 60 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 61 | eqid | ⊢ ( +g ‘ 𝐽 ) = ( +g ‘ 𝐽 ) | |
| 62 | eqid | ⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) | |
| 63 | 59 60 61 62 | ismgmhm | ⊢ ( 𝑓 ∈ ( 𝐽 MgmHom 𝐾 ) ↔ ( ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ∧ ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 64 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 65 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 66 | eqid | ⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) | |
| 67 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 68 | 64 65 66 67 | ismgmhm | ⊢ ( 𝑓 ∈ ( 𝐿 MgmHom 𝑀 ) ↔ ( ( 𝐿 ∈ Mgm ∧ 𝑀 ∈ Mgm ) ∧ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 69 | 58 63 68 | 3bitr4g | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐽 MgmHom 𝐾 ) ↔ 𝑓 ∈ ( 𝐿 MgmHom 𝑀 ) ) ) |
| 70 | 69 | eqrdv | ⊢ ( 𝜑 → ( 𝐽 MgmHom 𝐾 ) = ( 𝐿 MgmHom 𝑀 ) ) |