This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a magma homomorphism. (Contributed by AV, 25-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismgmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| ismgmhm.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | ||
| ismgmhm.p | ⊢ + = ( +g ‘ 𝑆 ) | ||
| ismgmhm.q | ⊢ ⨣ = ( +g ‘ 𝑇 ) | ||
| Assertion | ismgmhm | ⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismgmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 2 | ismgmhm.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | |
| 3 | ismgmhm.p | ⊢ + = ( +g ‘ 𝑆 ) | |
| 4 | ismgmhm.q | ⊢ ⨣ = ( +g ‘ 𝑇 ) | |
| 5 | mgmhmrcl | ⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) → ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ) | |
| 6 | fveq2 | ⊢ ( 𝑡 = 𝑇 → ( Base ‘ 𝑡 ) = ( Base ‘ 𝑇 ) ) | |
| 7 | 6 2 | eqtr4di | ⊢ ( 𝑡 = 𝑇 → ( Base ‘ 𝑡 ) = 𝐶 ) |
| 8 | fveq2 | ⊢ ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) | |
| 9 | 8 1 | eqtr4di | ⊢ ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = 𝐵 ) |
| 10 | 7 9 | oveqan12rd | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) = ( 𝐶 ↑m 𝐵 ) ) |
| 11 | 9 | adantr | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( Base ‘ 𝑠 ) = 𝐵 ) |
| 12 | fveq2 | ⊢ ( 𝑠 = 𝑆 → ( +g ‘ 𝑠 ) = ( +g ‘ 𝑆 ) ) | |
| 13 | 12 3 | eqtr4di | ⊢ ( 𝑠 = 𝑆 → ( +g ‘ 𝑠 ) = + ) |
| 14 | 13 | oveqd | ⊢ ( 𝑠 = 𝑆 → ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
| 15 | 14 | fveq2d | ⊢ ( 𝑠 = 𝑆 → ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ) |
| 16 | fveq2 | ⊢ ( 𝑡 = 𝑇 → ( +g ‘ 𝑡 ) = ( +g ‘ 𝑇 ) ) | |
| 17 | 16 4 | eqtr4di | ⊢ ( 𝑡 = 𝑇 → ( +g ‘ 𝑡 ) = ⨣ ) |
| 18 | 17 | oveqd | ⊢ ( 𝑡 = 𝑇 → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) |
| 19 | 15 18 | eqeqan12d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 20 | 11 19 | raleqbidv | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 21 | 11 20 | raleqbidv | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 22 | 10 21 | rabeqbidv | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → { 𝑓 ∈ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) } = { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ) |
| 23 | df-mgmhm | ⊢ MgmHom = ( 𝑠 ∈ Mgm , 𝑡 ∈ Mgm ↦ { 𝑓 ∈ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) } ) | |
| 24 | ovex | ⊢ ( 𝐶 ↑m 𝐵 ) ∈ V | |
| 25 | 24 | rabex | ⊢ { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ∈ V |
| 26 | 22 23 25 | ovmpoa | ⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) → ( 𝑆 MgmHom 𝑇 ) = { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ) |
| 27 | 26 | eleq2d | ⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) → ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ) ) |
| 28 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ) | |
| 29 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 30 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 31 | 29 30 | oveq12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
| 32 | 28 31 | eqeq12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 33 | 32 | 2ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 34 | 33 | elrab | ⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ↔ ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 35 | 2 | fvexi | ⊢ 𝐶 ∈ V |
| 36 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 37 | 35 36 | elmap | ⊢ ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ↔ 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 38 | 37 | anbi1i | ⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 39 | 34 38 | bitri | ⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 40 | 27 39 | bitrdi | ⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) → ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 41 | 5 40 | biadanii | ⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |