This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A magma homomorphism preserves the binary operation. (Contributed by AV, 25-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mgmhmlin.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| mgmhmlin.p | ⊢ + = ( +g ‘ 𝑆 ) | ||
| mgmhmlin.q | ⊢ ⨣ = ( +g ‘ 𝑇 ) | ||
| Assertion | mgmhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmhmlin.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 2 | mgmhmlin.p | ⊢ + = ( +g ‘ 𝑆 ) | |
| 3 | mgmhmlin.q | ⊢ ⨣ = ( +g ‘ 𝑇 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 5 | 1 4 2 3 | ismgmhm | ⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ∧ ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 6 | fvoveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ) | |
| 7 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 8 | 7 | oveq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
| 9 | 6 8 | eqeq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 + 𝑦 ) = ( 𝑋 + 𝑌 ) ) | |
| 11 | 10 | fveq2d | ⊢ ( 𝑦 = 𝑌 → ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑌 ) ) ) |
| 12 | fveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑌 ) ) | |
| 13 | 12 | oveq2d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑌 ) ) ) |
| 14 | 11 13 | eqeq12d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 15 | 9 14 | rspc2v | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 16 | 15 | com12 | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 17 | 16 | ad2antll | ⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ∧ ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 18 | 5 17 | sylbi | ⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 19 | 18 | 3impib | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑌 ) ) ) |