This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same (nonempty) base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a magma iff the other one is. (Contributed by AV, 25-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mgmpropd.k | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| mgmpropd.l | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| mgmpropd.b | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | ||
| mgmpropd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| Assertion | mgmpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ Mgm ↔ 𝐿 ∈ Mgm ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmpropd.k | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | mgmpropd.l | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | mgmpropd.b | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | |
| 4 | mgmpropd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 5 | simpl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → 𝜑 ) | |
| 6 | 1 | eqcomd | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = 𝐵 ) |
| 7 | 6 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 8 | 7 | biimpcd | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐾 ) → ( 𝜑 → 𝑥 ∈ 𝐵 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝜑 → 𝑥 ∈ 𝐵 ) ) |
| 10 | 9 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → 𝑥 ∈ 𝐵 ) |
| 11 | 6 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ ( Base ‘ 𝐾 ) ↔ 𝑦 ∈ 𝐵 ) ) |
| 12 | 11 | biimpd | ⊢ ( 𝜑 → ( 𝑦 ∈ ( Base ‘ 𝐾 ) → 𝑦 ∈ 𝐵 ) ) |
| 13 | 12 | adantld | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝑦 ∈ 𝐵 ) ) |
| 14 | 13 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → 𝑦 ∈ 𝐵 ) |
| 15 | 5 10 14 4 | syl12anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 16 | 15 | eleq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ↔ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) ) |
| 17 | 16 | 2ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) ) |
| 18 | 1 2 | eqtr3d | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
| 19 | 18 | eleq2d | ⊢ ( 𝜑 → ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ↔ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐿 ) ) ) |
| 20 | 18 19 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐿 ) ) ) |
| 21 | 18 20 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐿 ) ) ) |
| 22 | 17 21 | bitrd | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐿 ) ) ) |
| 23 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑎 𝑎 ∈ 𝐵 ) | |
| 24 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝐵 ↔ 𝑎 ∈ ( Base ‘ 𝐾 ) ) ) |
| 25 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 26 | eqid | ⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) | |
| 27 | 25 26 | ismgmn0 | ⊢ ( 𝑎 ∈ ( Base ‘ 𝐾 ) → ( 𝐾 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) ) |
| 28 | 24 27 | biimtrdi | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝐵 → ( 𝐾 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) ) ) |
| 29 | 28 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑎 𝑎 ∈ 𝐵 → ( 𝐾 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) ) ) |
| 30 | 23 29 | biimtrid | ⊢ ( 𝜑 → ( 𝐵 ≠ ∅ → ( 𝐾 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) ) ) |
| 31 | 3 30 | mpd | ⊢ ( 𝜑 → ( 𝐾 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) ) |
| 32 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝐵 ↔ 𝑎 ∈ ( Base ‘ 𝐿 ) ) ) |
| 33 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 34 | eqid | ⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) | |
| 35 | 33 34 | ismgmn0 | ⊢ ( 𝑎 ∈ ( Base ‘ 𝐿 ) → ( 𝐿 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐿 ) ) ) |
| 36 | 32 35 | biimtrdi | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝐵 → ( 𝐿 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐿 ) ) ) ) |
| 37 | 36 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑎 𝑎 ∈ 𝐵 → ( 𝐿 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐿 ) ) ) ) |
| 38 | 23 37 | biimtrid | ⊢ ( 𝜑 → ( 𝐵 ≠ ∅ → ( 𝐿 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐿 ) ) ) ) |
| 39 | 3 38 | mpd | ⊢ ( 𝜑 → ( 𝐿 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐿 ) ) ) |
| 40 | 22 31 39 | 3bitr4d | ⊢ ( 𝜑 → ( 𝐾 ∈ Mgm ↔ 𝐿 ∈ Mgm ) ) |