This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity diagonal is included in all elements of the filter base generated by the metric D . (Contributed by Thierry Arnoux, 22-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metust.1 | ⊢ 𝐹 = ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| Assertion | metustid | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( I ↾ 𝑋 ) ⊆ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metust.1 | ⊢ 𝐹 = ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| 2 | relres | ⊢ Rel ( I ↾ 𝑋 ) | |
| 3 | 2 | a1i | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → Rel ( I ↾ 𝑋 ) ) |
| 4 | vex | ⊢ 𝑞 ∈ V | |
| 5 | 4 | brresi | ⊢ ( 𝑝 ( I ↾ 𝑋 ) 𝑞 ↔ ( 𝑝 ∈ 𝑋 ∧ 𝑝 I 𝑞 ) ) |
| 6 | df-br | ⊢ ( 𝑝 ( I ↾ 𝑋 ) 𝑞 ↔ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) | |
| 7 | 4 | ideq | ⊢ ( 𝑝 I 𝑞 ↔ 𝑝 = 𝑞 ) |
| 8 | 7 | anbi2i | ⊢ ( ( 𝑝 ∈ 𝑋 ∧ 𝑝 I 𝑞 ) ↔ ( 𝑝 ∈ 𝑋 ∧ 𝑝 = 𝑞 ) ) |
| 9 | 5 6 8 | 3bitr3i | ⊢ ( 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ↔ ( 𝑝 ∈ 𝑋 ∧ 𝑝 = 𝑞 ) ) |
| 10 | 9 | biimpi | ⊢ ( 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) → ( 𝑝 ∈ 𝑋 ∧ 𝑝 = 𝑞 ) ) |
| 11 | 10 | ad2antlr | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) → ( 𝑝 ∈ 𝑋 ∧ 𝑝 = 𝑞 ) ) |
| 12 | 11 | simprd | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) → 𝑝 = 𝑞 ) |
| 13 | df-ov | ⊢ ( 𝑝 𝐷 𝑝 ) = ( 𝐷 ‘ 〈 𝑝 , 𝑝 〉 ) | |
| 14 | opeq2 | ⊢ ( 𝑝 = 𝑞 → 〈 𝑝 , 𝑝 〉 = 〈 𝑝 , 𝑞 〉 ) | |
| 15 | 14 | fveq2d | ⊢ ( 𝑝 = 𝑞 → ( 𝐷 ‘ 〈 𝑝 , 𝑝 〉 ) = ( 𝐷 ‘ 〈 𝑝 , 𝑞 〉 ) ) |
| 16 | 13 15 | eqtrid | ⊢ ( 𝑝 = 𝑞 → ( 𝑝 𝐷 𝑝 ) = ( 𝐷 ‘ 〈 𝑝 , 𝑞 〉 ) ) |
| 17 | 12 16 | syl | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) → ( 𝑝 𝐷 𝑝 ) = ( 𝐷 ‘ 〈 𝑝 , 𝑞 〉 ) ) |
| 18 | simplll | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 19 | 11 | simpld | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) → 𝑝 ∈ 𝑋 ) |
| 20 | psmet0 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑝 𝐷 𝑝 ) = 0 ) | |
| 21 | 18 19 20 | syl2anc | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) → ( 𝑝 𝐷 𝑝 ) = 0 ) |
| 22 | 17 21 | eqtr3d | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) → ( 𝐷 ‘ 〈 𝑝 , 𝑞 〉 ) = 0 ) |
| 23 | 0xr | ⊢ 0 ∈ ℝ* | |
| 24 | rpxr | ⊢ ( 𝑎 ∈ ℝ+ → 𝑎 ∈ ℝ* ) | |
| 25 | rpgt0 | ⊢ ( 𝑎 ∈ ℝ+ → 0 < 𝑎 ) | |
| 26 | lbico1 | ⊢ ( ( 0 ∈ ℝ* ∧ 𝑎 ∈ ℝ* ∧ 0 < 𝑎 ) → 0 ∈ ( 0 [,) 𝑎 ) ) | |
| 27 | 23 24 25 26 | mp3an2i | ⊢ ( 𝑎 ∈ ℝ+ → 0 ∈ ( 0 [,) 𝑎 ) ) |
| 28 | 27 | adantl | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) → 0 ∈ ( 0 [,) 𝑎 ) ) |
| 29 | 22 28 | eqeltrd | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) → ( 𝐷 ‘ 〈 𝑝 , 𝑞 〉 ) ∈ ( 0 [,) 𝑎 ) ) |
| 30 | psmetf | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
| 31 | 30 | ffund | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → Fun 𝐷 ) |
| 32 | 31 | ad3antrrr | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) → Fun 𝐷 ) |
| 33 | 12 19 | eqeltrrd | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) → 𝑞 ∈ 𝑋 ) |
| 34 | 19 33 | opelxpd | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) → 〈 𝑝 , 𝑞 〉 ∈ ( 𝑋 × 𝑋 ) ) |
| 35 | 30 | fdmd | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
| 36 | 35 | ad3antrrr | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
| 37 | 34 36 | eleqtrrd | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) → 〈 𝑝 , 𝑞 〉 ∈ dom 𝐷 ) |
| 38 | fvimacnv | ⊢ ( ( Fun 𝐷 ∧ 〈 𝑝 , 𝑞 〉 ∈ dom 𝐷 ) → ( ( 𝐷 ‘ 〈 𝑝 , 𝑞 〉 ) ∈ ( 0 [,) 𝑎 ) ↔ 〈 𝑝 , 𝑞 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) | |
| 39 | 32 37 38 | syl2anc | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) → ( ( 𝐷 ‘ 〈 𝑝 , 𝑞 〉 ) ∈ ( 0 [,) 𝑎 ) ↔ 〈 𝑝 , 𝑞 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 40 | 29 39 | mpbid | ⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) → 〈 𝑝 , 𝑞 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 41 | 40 | adantr | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 〈 𝑝 , 𝑞 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 42 | simpr | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| 43 | 41 42 | eleqtrrd | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 〈 𝑝 , 𝑞 〉 ∈ 𝐴 ) |
| 44 | simplr | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) → 𝐴 ∈ 𝐹 ) | |
| 45 | 1 | metustel | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐴 ∈ 𝐹 ↔ ∃ 𝑎 ∈ ℝ+ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 46 | 45 | ad2antrr | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) → ( 𝐴 ∈ 𝐹 ↔ ∃ 𝑎 ∈ ℝ+ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 47 | 44 46 | mpbid | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) → ∃ 𝑎 ∈ ℝ+ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 48 | 43 47 | r19.29a | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) ) → 〈 𝑝 , 𝑞 〉 ∈ 𝐴 ) |
| 49 | 48 | ex | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 〈 𝑝 , 𝑞 〉 ∈ ( I ↾ 𝑋 ) → 〈 𝑝 , 𝑞 〉 ∈ 𝐴 ) ) |
| 50 | 3 49 | relssdv | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( I ↾ 𝑋 ) ⊆ 𝐴 ) |