This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | psmet0 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 2 | ispsmet | ⊢ ( 𝑋 ∈ V → ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑎 ∈ 𝑋 ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑎 ∈ 𝑋 ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) ) |
| 4 | 3 | ibi | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑎 ∈ 𝑋 ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) |
| 5 | 4 | simprd | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∀ 𝑎 ∈ 𝑋 ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) |
| 6 | 5 | r19.21bi | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ 𝑋 ) → ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) |
| 7 | 6 | simpld | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝑎 𝐷 𝑎 ) = 0 ) |
| 8 | 7 | ralrimiva | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∀ 𝑎 ∈ 𝑋 ( 𝑎 𝐷 𝑎 ) = 0 ) |
| 9 | id | ⊢ ( 𝑎 = 𝐴 → 𝑎 = 𝐴 ) | |
| 10 | 9 9 | oveq12d | ⊢ ( 𝑎 = 𝐴 → ( 𝑎 𝐷 𝑎 ) = ( 𝐴 𝐷 𝐴 ) ) |
| 11 | 10 | eqeq1d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 𝐷 𝑎 ) = 0 ↔ ( 𝐴 𝐷 𝐴 ) = 0 ) ) |
| 12 | 11 | rspcv | ⊢ ( 𝐴 ∈ 𝑋 → ( ∀ 𝑎 ∈ 𝑋 ( 𝑎 𝐷 𝑎 ) = 0 → ( 𝐴 𝐷 𝐴 ) = 0 ) ) |
| 13 | 8 12 | mpan9 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐴 ) = 0 ) |