This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any two elements of the filter base generated by the metric D can be compared, like for RR+ (i.e. it's totally ordered). (Contributed by Thierry Arnoux, 22-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metust.1 | ⊢ 𝐹 = ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| Assertion | metustto | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metust.1 | ⊢ 𝐹 = ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| 2 | simpll | ⊢ ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) → 𝑎 ∈ ℝ+ ) | |
| 3 | 2 | rpred | ⊢ ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) → 𝑎 ∈ ℝ ) |
| 4 | simplr | ⊢ ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) → 𝑏 ∈ ℝ+ ) | |
| 5 | 4 | rpred | ⊢ ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) → 𝑏 ∈ ℝ ) |
| 6 | simpllr | ⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑎 ≤ 𝑏 ) → 𝑏 ∈ ℝ+ ) | |
| 7 | 6 | rpred | ⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑎 ≤ 𝑏 ) → 𝑏 ∈ ℝ ) |
| 8 | 0xr | ⊢ 0 ∈ ℝ* | |
| 9 | 8 | a1i | ⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏 ) → 0 ∈ ℝ* ) |
| 10 | simpl | ⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏 ) → 𝑏 ∈ ℝ ) | |
| 11 | 10 | rexrd | ⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏 ) → 𝑏 ∈ ℝ* ) |
| 12 | 0le0 | ⊢ 0 ≤ 0 | |
| 13 | 12 | a1i | ⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏 ) → 0 ≤ 0 ) |
| 14 | simpr | ⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏 ) → 𝑎 ≤ 𝑏 ) | |
| 15 | icossico | ⊢ ( ( ( 0 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ ( 0 ≤ 0 ∧ 𝑎 ≤ 𝑏 ) ) → ( 0 [,) 𝑎 ) ⊆ ( 0 [,) 𝑏 ) ) | |
| 16 | 9 11 13 14 15 | syl22anc | ⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏 ) → ( 0 [,) 𝑎 ) ⊆ ( 0 [,) 𝑏 ) ) |
| 17 | imass2 | ⊢ ( ( 0 [,) 𝑎 ) ⊆ ( 0 [,) 𝑏 ) → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏 ) → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 19 | 7 18 | sylancom | ⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑎 ≤ 𝑏 ) → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 20 | simplrl | ⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑎 ≤ 𝑏 ) → 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| 21 | simplrr | ⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑎 ≤ 𝑏 ) → 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) | |
| 22 | 19 20 21 | 3sstr4d | ⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑎 ≤ 𝑏 ) → 𝐴 ⊆ 𝐵 ) |
| 23 | 22 | orcd | ⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑎 ≤ 𝑏 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
| 24 | simplll | ⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑏 ≤ 𝑎 ) → 𝑎 ∈ ℝ+ ) | |
| 25 | 24 | rpred | ⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑏 ≤ 𝑎 ) → 𝑎 ∈ ℝ ) |
| 26 | 8 | a1i | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ≤ 𝑎 ) → 0 ∈ ℝ* ) |
| 27 | simpl | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ≤ 𝑎 ) → 𝑎 ∈ ℝ ) | |
| 28 | 27 | rexrd | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ≤ 𝑎 ) → 𝑎 ∈ ℝ* ) |
| 29 | 12 | a1i | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ≤ 𝑎 ) → 0 ≤ 0 ) |
| 30 | simpr | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ≤ 𝑎 ) → 𝑏 ≤ 𝑎 ) | |
| 31 | icossico | ⊢ ( ( ( 0 ∈ ℝ* ∧ 𝑎 ∈ ℝ* ) ∧ ( 0 ≤ 0 ∧ 𝑏 ≤ 𝑎 ) ) → ( 0 [,) 𝑏 ) ⊆ ( 0 [,) 𝑎 ) ) | |
| 32 | 26 28 29 30 31 | syl22anc | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ≤ 𝑎 ) → ( 0 [,) 𝑏 ) ⊆ ( 0 [,) 𝑎 ) ) |
| 33 | imass2 | ⊢ ( ( 0 [,) 𝑏 ) ⊆ ( 0 [,) 𝑎 ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| 34 | 32 33 | syl | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ≤ 𝑎 ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 35 | 25 34 | sylancom | ⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑏 ≤ 𝑎 ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 36 | simplrr | ⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑏 ≤ 𝑎 ) → 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) | |
| 37 | simplrl | ⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑏 ≤ 𝑎 ) → 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| 38 | 35 36 37 | 3sstr4d | ⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑏 ≤ 𝑎 ) → 𝐵 ⊆ 𝐴 ) |
| 39 | 38 | olcd | ⊢ ( ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∧ 𝑏 ≤ 𝑎 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
| 40 | 3 5 23 39 | lecasei | ⊢ ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
| 41 | 40 | adantlll | ⊢ ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑏 ∈ ℝ+ ) ∧ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
| 42 | 1 | metustel | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐴 ∈ 𝐹 ↔ ∃ 𝑎 ∈ ℝ+ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 43 | 42 | biimpa | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ∃ 𝑎 ∈ ℝ+ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 44 | 43 | 3adant3 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ∃ 𝑎 ∈ ℝ+ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 45 | oveq2 | ⊢ ( 𝑎 = 𝑏 → ( 0 [,) 𝑎 ) = ( 0 [,) 𝑏 ) ) | |
| 46 | 45 | imaeq2d | ⊢ ( 𝑎 = 𝑏 → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 47 | 46 | cbvmptv | ⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) = ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 48 | 47 | rneqi | ⊢ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) = ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 49 | 1 48 | eqtri | ⊢ 𝐹 = ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 50 | 49 | metustel | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐵 ∈ 𝐹 ↔ ∃ 𝑏 ∈ ℝ+ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) |
| 51 | 50 | biimpa | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐵 ∈ 𝐹 ) → ∃ 𝑏 ∈ ℝ+ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 52 | 51 | 3adant2 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ∃ 𝑏 ∈ ℝ+ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 53 | reeanv | ⊢ ( ∃ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℝ+ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ↔ ( ∃ 𝑎 ∈ ℝ+ 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ ∃ 𝑏 ∈ ℝ+ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) | |
| 54 | 44 52 53 | sylanbrc | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ∃ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℝ+ ( 𝐴 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝐵 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) |
| 55 | 41 54 | r19.29vva | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |