This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any element A of the filter base generated by the metric D , the half element (corresponding to half the distance) is also in this base. (Contributed by Thierry Arnoux, 28-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metust.1 | |- F = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
|
| Assertion | metustexhalf | |- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) -> E. v e. F ( v o. v ) C_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metust.1 | |- F = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
|
| 2 | simp-4r | |- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> D e. ( PsMet ` X ) ) |
|
| 3 | simplr | |- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> a e. RR+ ) |
|
| 4 | 3 | rphalfcld | |- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( a / 2 ) e. RR+ ) |
| 5 | eqidd | |- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( `' D " ( 0 [,) ( a / 2 ) ) ) = ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
|
| 6 | oveq2 | |- ( b = ( a / 2 ) -> ( 0 [,) b ) = ( 0 [,) ( a / 2 ) ) ) |
|
| 7 | 6 | imaeq2d | |- ( b = ( a / 2 ) -> ( `' D " ( 0 [,) b ) ) = ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
| 8 | 7 | rspceeqv | |- ( ( ( a / 2 ) e. RR+ /\ ( `' D " ( 0 [,) ( a / 2 ) ) ) = ( `' D " ( 0 [,) ( a / 2 ) ) ) ) -> E. b e. RR+ ( `' D " ( 0 [,) ( a / 2 ) ) ) = ( `' D " ( 0 [,) b ) ) ) |
| 9 | 4 5 8 | syl2anc | |- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> E. b e. RR+ ( `' D " ( 0 [,) ( a / 2 ) ) ) = ( `' D " ( 0 [,) b ) ) ) |
| 10 | oveq2 | |- ( a = b -> ( 0 [,) a ) = ( 0 [,) b ) ) |
|
| 11 | 10 | imaeq2d | |- ( a = b -> ( `' D " ( 0 [,) a ) ) = ( `' D " ( 0 [,) b ) ) ) |
| 12 | 11 | cbvmptv | |- ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) |
| 13 | 12 | rneqi | |- ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) |
| 14 | 1 13 | eqtri | |- F = ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) |
| 15 | 14 | metustel | |- ( D e. ( PsMet ` X ) -> ( ( `' D " ( 0 [,) ( a / 2 ) ) ) e. F <-> E. b e. RR+ ( `' D " ( 0 [,) ( a / 2 ) ) ) = ( `' D " ( 0 [,) b ) ) ) ) |
| 16 | 15 | biimpar | |- ( ( D e. ( PsMet ` X ) /\ E. b e. RR+ ( `' D " ( 0 [,) ( a / 2 ) ) ) = ( `' D " ( 0 [,) b ) ) ) -> ( `' D " ( 0 [,) ( a / 2 ) ) ) e. F ) |
| 17 | 2 9 16 | syl2anc | |- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( `' D " ( 0 [,) ( a / 2 ) ) ) e. F ) |
| 18 | relco | |- Rel ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
|
| 19 | 18 | a1i | |- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> Rel ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) |
| 20 | cossxp | |- ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( dom ( `' D " ( 0 [,) ( a / 2 ) ) ) X. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
|
| 21 | cnvimass | |- ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ dom D |
|
| 22 | psmetf | |- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* ) |
|
| 23 | 21 22 | fssdm | |- ( D e. ( PsMet ` X ) -> ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ( X X. X ) ) |
| 24 | dmss | |- ( ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ( X X. X ) -> dom ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ dom ( X X. X ) ) |
|
| 25 | rnss | |- ( ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ( X X. X ) -> ran ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ran ( X X. X ) ) |
|
| 26 | xpss12 | |- ( ( dom ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ dom ( X X. X ) /\ ran ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ran ( X X. X ) ) -> ( dom ( `' D " ( 0 [,) ( a / 2 ) ) ) X. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( dom ( X X. X ) X. ran ( X X. X ) ) ) |
|
| 27 | 24 25 26 | syl2anc | |- ( ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ( X X. X ) -> ( dom ( `' D " ( 0 [,) ( a / 2 ) ) ) X. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( dom ( X X. X ) X. ran ( X X. X ) ) ) |
| 28 | 23 27 | syl | |- ( D e. ( PsMet ` X ) -> ( dom ( `' D " ( 0 [,) ( a / 2 ) ) ) X. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( dom ( X X. X ) X. ran ( X X. X ) ) ) |
| 29 | 28 | adantl | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( dom ( `' D " ( 0 [,) ( a / 2 ) ) ) X. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( dom ( X X. X ) X. ran ( X X. X ) ) ) |
| 30 | dmxp | |- ( X =/= (/) -> dom ( X X. X ) = X ) |
|
| 31 | rnxp | |- ( X =/= (/) -> ran ( X X. X ) = X ) |
|
| 32 | 30 31 | xpeq12d | |- ( X =/= (/) -> ( dom ( X X. X ) X. ran ( X X. X ) ) = ( X X. X ) ) |
| 33 | 32 | adantr | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( dom ( X X. X ) X. ran ( X X. X ) ) = ( X X. X ) ) |
| 34 | 29 33 | sseqtrd | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( dom ( `' D " ( 0 [,) ( a / 2 ) ) ) X. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( X X. X ) ) |
| 35 | 20 34 | sstrid | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( X X. X ) ) |
| 36 | 35 | ad3antrrr | |- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( X X. X ) ) |
| 37 | 36 | sselda | |- ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> <. p , q >. e. ( X X. X ) ) |
| 38 | opelxp | |- ( <. p , q >. e. ( X X. X ) <-> ( p e. X /\ q e. X ) ) |
|
| 39 | 37 38 | sylib | |- ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> ( p e. X /\ q e. X ) ) |
| 40 | simpll | |- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ ( p e. X /\ q e. X ) ) -> ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) ) |
|
| 41 | simprl | |- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ ( p e. X /\ q e. X ) ) -> p e. X ) |
|
| 42 | simprr | |- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ ( p e. X /\ q e. X ) ) -> q e. X ) |
|
| 43 | simplr | |- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ ( p e. X /\ q e. X ) ) -> <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) |
|
| 44 | simplll | |- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) ) |
|
| 45 | 44 | simp1d | |- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) ) |
| 46 | 45 2 | syl | |- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> D e. ( PsMet ` X ) ) |
| 47 | 45 3 | syl | |- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> a e. RR+ ) |
| 48 | 46 47 | jca | |- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( D e. ( PsMet ` X ) /\ a e. RR+ ) ) |
| 49 | 44 | simp2d | |- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> p e. X ) |
| 50 | 44 | simp3d | |- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> q e. X ) |
| 51 | 48 49 50 | 3jca | |- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) ) |
| 52 | simplr | |- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> r e. X ) |
|
| 53 | simprl | |- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> p ( `' D " ( 0 [,) ( a / 2 ) ) ) r ) |
|
| 54 | simprr | |- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) |
|
| 55 | simpll | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) ) |
|
| 56 | 55 | simp1d | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( D e. ( PsMet ` X ) /\ a e. RR+ ) ) |
| 57 | 56 | simpld | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> D e. ( PsMet ` X ) ) |
| 58 | 22 | ffund | |- ( D e. ( PsMet ` X ) -> Fun D ) |
| 59 | 57 58 | syl | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> Fun D ) |
| 60 | 55 | simp2d | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> p e. X ) |
| 61 | 55 | simp3d | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> q e. X ) |
| 62 | 60 61 | opelxpd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. p , q >. e. ( X X. X ) ) |
| 63 | 22 | fdmd | |- ( D e. ( PsMet ` X ) -> dom D = ( X X. X ) ) |
| 64 | 57 63 | syl | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> dom D = ( X X. X ) ) |
| 65 | 62 64 | eleqtrrd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. p , q >. e. dom D ) |
| 66 | 0xr | |- 0 e. RR* |
|
| 67 | 66 | a1i | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> 0 e. RR* ) |
| 68 | 56 | simprd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> a e. RR+ ) |
| 69 | 68 | rpxrd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> a e. RR* ) |
| 70 | 57 22 | syl | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> D : ( X X. X ) --> RR* ) |
| 71 | 70 62 | ffvelcdmd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( D ` <. p , q >. ) e. RR* ) |
| 72 | psmetge0 | |- ( ( D e. ( PsMet ` X ) /\ p e. X /\ q e. X ) -> 0 <_ ( p D q ) ) |
|
| 73 | 57 60 61 72 | syl3anc | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> 0 <_ ( p D q ) ) |
| 74 | df-ov | |- ( p D q ) = ( D ` <. p , q >. ) |
|
| 75 | 73 74 | breqtrdi | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> 0 <_ ( D ` <. p , q >. ) ) |
| 76 | 74 71 | eqeltrid | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( p D q ) e. RR* ) |
| 77 | 0red | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> 0 e. RR ) |
|
| 78 | 68 | rpred | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> a e. RR ) |
| 79 | 78 | rehalfcld | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( a / 2 ) e. RR ) |
| 80 | 79 | rexrd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( a / 2 ) e. RR* ) |
| 81 | df-ov | |- ( p D r ) = ( D ` <. p , r >. ) |
|
| 82 | simplr | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> r e. X ) |
|
| 83 | 60 82 | opelxpd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. p , r >. e. ( X X. X ) ) |
| 84 | 83 64 | eleqtrrd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. p , r >. e. dom D ) |
| 85 | simprl | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> p ( `' D " ( 0 [,) ( a / 2 ) ) ) r ) |
|
| 86 | df-br | |- ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r <-> <. p , r >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
|
| 87 | 85 86 | sylib | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. p , r >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
| 88 | fvimacnv | |- ( ( Fun D /\ <. p , r >. e. dom D ) -> ( ( D ` <. p , r >. ) e. ( 0 [,) ( a / 2 ) ) <-> <. p , r >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) |
|
| 89 | 88 | biimpar | |- ( ( ( Fun D /\ <. p , r >. e. dom D ) /\ <. p , r >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) -> ( D ` <. p , r >. ) e. ( 0 [,) ( a / 2 ) ) ) |
| 90 | 59 84 87 89 | syl21anc | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( D ` <. p , r >. ) e. ( 0 [,) ( a / 2 ) ) ) |
| 91 | 81 90 | eqeltrid | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( p D r ) e. ( 0 [,) ( a / 2 ) ) ) |
| 92 | elico2 | |- ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) -> ( ( p D r ) e. ( 0 [,) ( a / 2 ) ) <-> ( ( p D r ) e. RR /\ 0 <_ ( p D r ) /\ ( p D r ) < ( a / 2 ) ) ) ) |
|
| 93 | 92 | biimpa | |- ( ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) /\ ( p D r ) e. ( 0 [,) ( a / 2 ) ) ) -> ( ( p D r ) e. RR /\ 0 <_ ( p D r ) /\ ( p D r ) < ( a / 2 ) ) ) |
| 94 | 93 | simp1d | |- ( ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) /\ ( p D r ) e. ( 0 [,) ( a / 2 ) ) ) -> ( p D r ) e. RR ) |
| 95 | 77 80 91 94 | syl21anc | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( p D r ) e. RR ) |
| 96 | df-ov | |- ( r D q ) = ( D ` <. r , q >. ) |
|
| 97 | 82 61 | opelxpd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. r , q >. e. ( X X. X ) ) |
| 98 | 97 64 | eleqtrrd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. r , q >. e. dom D ) |
| 99 | simprr | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) |
|
| 100 | df-br | |- ( r ( `' D " ( 0 [,) ( a / 2 ) ) ) q <-> <. r , q >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
|
| 101 | 99 100 | sylib | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. r , q >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
| 102 | fvimacnv | |- ( ( Fun D /\ <. r , q >. e. dom D ) -> ( ( D ` <. r , q >. ) e. ( 0 [,) ( a / 2 ) ) <-> <. r , q >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) |
|
| 103 | 102 | biimpar | |- ( ( ( Fun D /\ <. r , q >. e. dom D ) /\ <. r , q >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) -> ( D ` <. r , q >. ) e. ( 0 [,) ( a / 2 ) ) ) |
| 104 | 59 98 101 103 | syl21anc | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( D ` <. r , q >. ) e. ( 0 [,) ( a / 2 ) ) ) |
| 105 | 96 104 | eqeltrid | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( r D q ) e. ( 0 [,) ( a / 2 ) ) ) |
| 106 | elico2 | |- ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) -> ( ( r D q ) e. ( 0 [,) ( a / 2 ) ) <-> ( ( r D q ) e. RR /\ 0 <_ ( r D q ) /\ ( r D q ) < ( a / 2 ) ) ) ) |
|
| 107 | 106 | biimpa | |- ( ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) /\ ( r D q ) e. ( 0 [,) ( a / 2 ) ) ) -> ( ( r D q ) e. RR /\ 0 <_ ( r D q ) /\ ( r D q ) < ( a / 2 ) ) ) |
| 108 | 107 | simp1d | |- ( ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) /\ ( r D q ) e. ( 0 [,) ( a / 2 ) ) ) -> ( r D q ) e. RR ) |
| 109 | 77 80 105 108 | syl21anc | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( r D q ) e. RR ) |
| 110 | 95 109 | rexaddd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( p D r ) +e ( r D q ) ) = ( ( p D r ) + ( r D q ) ) ) |
| 111 | 95 109 | readdcld | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( p D r ) + ( r D q ) ) e. RR ) |
| 112 | 110 111 | eqeltrd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( p D r ) +e ( r D q ) ) e. RR ) |
| 113 | 112 | rexrd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( p D r ) +e ( r D q ) ) e. RR* ) |
| 114 | psmettri | |- ( ( D e. ( PsMet ` X ) /\ ( p e. X /\ q e. X /\ r e. X ) ) -> ( p D q ) <_ ( ( p D r ) +e ( r D q ) ) ) |
|
| 115 | 57 60 61 82 114 | syl13anc | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( p D q ) <_ ( ( p D r ) +e ( r D q ) ) ) |
| 116 | 93 | simp3d | |- ( ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) /\ ( p D r ) e. ( 0 [,) ( a / 2 ) ) ) -> ( p D r ) < ( a / 2 ) ) |
| 117 | 77 80 91 116 | syl21anc | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( p D r ) < ( a / 2 ) ) |
| 118 | 107 | simp3d | |- ( ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) /\ ( r D q ) e. ( 0 [,) ( a / 2 ) ) ) -> ( r D q ) < ( a / 2 ) ) |
| 119 | 77 80 105 118 | syl21anc | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( r D q ) < ( a / 2 ) ) |
| 120 | 95 109 78 117 119 | lt2halvesd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( p D r ) + ( r D q ) ) < a ) |
| 121 | 110 120 | eqbrtrd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( p D r ) +e ( r D q ) ) < a ) |
| 122 | 76 113 69 115 121 | xrlelttrd | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( p D q ) < a ) |
| 123 | 74 122 | eqbrtrrid | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( D ` <. p , q >. ) < a ) |
| 124 | 67 69 71 75 123 | elicod | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( D ` <. p , q >. ) e. ( 0 [,) a ) ) |
| 125 | fvimacnv | |- ( ( Fun D /\ <. p , q >. e. dom D ) -> ( ( D ` <. p , q >. ) e. ( 0 [,) a ) <-> <. p , q >. e. ( `' D " ( 0 [,) a ) ) ) ) |
|
| 126 | 125 | biimpa | |- ( ( ( Fun D /\ <. p , q >. e. dom D ) /\ ( D ` <. p , q >. ) e. ( 0 [,) a ) ) -> <. p , q >. e. ( `' D " ( 0 [,) a ) ) ) |
| 127 | df-br | |- ( p ( `' D " ( 0 [,) a ) ) q <-> <. p , q >. e. ( `' D " ( 0 [,) a ) ) ) |
|
| 128 | 126 127 | sylibr | |- ( ( ( Fun D /\ <. p , q >. e. dom D ) /\ ( D ` <. p , q >. ) e. ( 0 [,) a ) ) -> p ( `' D " ( 0 [,) a ) ) q ) |
| 129 | 59 65 124 128 | syl21anc | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> p ( `' D " ( 0 [,) a ) ) q ) |
| 130 | 51 52 53 54 129 | syl22anc | |- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> p ( `' D " ( 0 [,) a ) ) q ) |
| 131 | 45 | simprd | |- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> A = ( `' D " ( 0 [,) a ) ) ) |
| 132 | 131 | breqd | |- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( p A q <-> p ( `' D " ( 0 [,) a ) ) q ) ) |
| 133 | 130 132 | mpbird | |- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> p A q ) |
| 134 | simpr | |- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) |
|
| 135 | df-br | |- ( p ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) q <-> <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) |
|
| 136 | 134 135 | sylibr | |- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> p ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) q ) |
| 137 | vex | |- p e. _V |
|
| 138 | vex | |- q e. _V |
|
| 139 | 137 138 | brco | |- ( p ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) q <-> E. r ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) |
| 140 | 136 139 | sylib | |- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> E. r ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) |
| 141 | 23 | adantl | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ( X X. X ) ) |
| 142 | 141 25 | syl | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ran ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ran ( X X. X ) ) |
| 143 | 31 | adantr | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ran ( X X. X ) = X ) |
| 144 | 142 143 | sseqtrd | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ran ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ X ) |
| 145 | 144 | adantr | |- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ p ( `' D " ( 0 [,) ( a / 2 ) ) ) r ) -> ran ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ X ) |
| 146 | vex | |- r e. _V |
|
| 147 | 137 146 | brelrn | |- ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r -> r e. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
| 148 | 147 | adantl | |- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ p ( `' D " ( 0 [,) ( a / 2 ) ) ) r ) -> r e. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
| 149 | 145 148 | sseldd | |- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ p ( `' D " ( 0 [,) ( a / 2 ) ) ) r ) -> r e. X ) |
| 150 | 149 | adantrr | |- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> r e. X ) |
| 151 | 150 | ex | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) -> r e. X ) ) |
| 152 | 151 | ancrd | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) -> ( r e. X /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) ) ) |
| 153 | 152 | eximdv | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( E. r ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) -> E. r ( r e. X /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) ) ) |
| 154 | 153 | ad3antrrr | |- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( E. r ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) -> E. r ( r e. X /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) ) ) |
| 155 | 154 | 3ad2ant1 | |- ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) -> ( E. r ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) -> E. r ( r e. X /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) ) ) |
| 156 | 155 | adantr | |- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> ( E. r ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) -> E. r ( r e. X /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) ) ) |
| 157 | 140 156 | mpd | |- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> E. r ( r e. X /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) ) |
| 158 | df-rex | |- ( E. r e. X ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) <-> E. r ( r e. X /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) ) |
|
| 159 | 157 158 | sylibr | |- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> E. r e. X ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) |
| 160 | 133 159 | r19.29a | |- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> p A q ) |
| 161 | df-br | |- ( p A q <-> <. p , q >. e. A ) |
|
| 162 | 160 161 | sylib | |- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> <. p , q >. e. A ) |
| 163 | 40 41 42 43 162 | syl31anc | |- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ ( p e. X /\ q e. X ) ) -> <. p , q >. e. A ) |
| 164 | 39 163 | mpdan | |- ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> <. p , q >. e. A ) |
| 165 | 164 | ex | |- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) -> <. p , q >. e. A ) ) |
| 166 | 19 165 | relssdv | |- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ A ) |
| 167 | id | |- ( v = ( `' D " ( 0 [,) ( a / 2 ) ) ) -> v = ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
|
| 168 | 167 167 | coeq12d | |- ( v = ( `' D " ( 0 [,) ( a / 2 ) ) ) -> ( v o. v ) = ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) |
| 169 | 168 | sseq1d | |- ( v = ( `' D " ( 0 [,) ( a / 2 ) ) ) -> ( ( v o. v ) C_ A <-> ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ A ) ) |
| 170 | 169 | rspcev | |- ( ( ( `' D " ( 0 [,) ( a / 2 ) ) ) e. F /\ ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ A ) -> E. v e. F ( v o. v ) C_ A ) |
| 171 | 17 166 170 | syl2anc | |- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> E. v e. F ( v o. v ) C_ A ) |
| 172 | 1 | metustel | |- ( D e. ( PsMet ` X ) -> ( A e. F <-> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) ) |
| 173 | 172 | adantl | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( A e. F <-> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) ) |
| 174 | 173 | biimpa | |- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) -> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) |
| 175 | 171 174 | r19.29a | |- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) -> E. v e. F ( v o. v ) C_ A ) |