This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express that F is continuous at P for metric spaces. Proposition 14-4.2 of Gleason p. 240. (Contributed by NM, 17-May-2007) (Revised by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metcn.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| metcn.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | ||
| Assertion | metcnp3 | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metcn.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| 2 | metcn.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | |
| 3 | 1 | mopntopon | ⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 5 | 2 | mopnval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) → 𝐾 = ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) |
| 6 | 5 | 3ad2ant2 | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → 𝐾 = ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) |
| 7 | 2 | mopntopon | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 9 | simp3 | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → 𝑃 ∈ 𝑋 ) | |
| 10 | 4 6 8 9 | tgcnp | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ ran ( ball ‘ 𝐷 ) ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) ) ) |
| 11 | simpll2 | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) | |
| 12 | simplr | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 13 | simpll3 | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) → 𝑃 ∈ 𝑋 ) | |
| 14 | 12 13 | ffvelcdmd | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝑌 ) |
| 15 | simpr | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ+ ) | |
| 16 | blcntr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑌 ∧ 𝑦 ∈ ℝ+ ) → ( 𝐹 ‘ 𝑃 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) | |
| 17 | 11 14 15 16 | syl3anc | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝐹 ‘ 𝑃 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) |
| 18 | rpxr | ⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ* ) | |
| 19 | 18 | adantl | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ* ) |
| 20 | blelrn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑌 ∧ 𝑦 ∈ ℝ* ) → ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ∈ ran ( ball ‘ 𝐷 ) ) | |
| 21 | 11 14 19 20 | syl3anc | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ∈ ran ( ball ‘ 𝐷 ) ) |
| 22 | eleq2 | ⊢ ( 𝑢 = ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ↔ ( 𝐹 ‘ 𝑃 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) | |
| 23 | sseq2 | ⊢ ( 𝑢 = ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) → ( ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ↔ ( 𝐹 “ 𝑣 ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) | |
| 24 | 23 | anbi2d | ⊢ ( 𝑢 = ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) → ( ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ↔ ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) |
| 25 | 24 | rexbidv | ⊢ ( 𝑢 = ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) → ( ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ↔ ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) |
| 26 | 22 25 | imbi12d | ⊢ ( 𝑢 = ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) → ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ↔ ( ( 𝐹 ‘ 𝑃 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) ) |
| 27 | 26 | rspcv | ⊢ ( ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ∈ ran ( ball ‘ 𝐷 ) → ( ∀ 𝑢 ∈ ran ( ball ‘ 𝐷 ) ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) ) |
| 28 | 21 27 | syl | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) → ( ∀ 𝑢 ∈ ran ( ball ‘ 𝐷 ) ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) ) |
| 29 | 17 28 | mpid | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) → ( ∀ 𝑢 ∈ ran ( ball ‘ 𝐷 ) ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) |
| 30 | simpl1 | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 31 | 30 | ad2antrr | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑣 ∈ 𝐽 ) ) ∧ 𝑃 ∈ 𝑣 ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 32 | simplrr | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑣 ∈ 𝐽 ) ) ∧ 𝑃 ∈ 𝑣 ) → 𝑣 ∈ 𝐽 ) | |
| 33 | simpr | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑣 ∈ 𝐽 ) ) ∧ 𝑃 ∈ 𝑣 ) → 𝑃 ∈ 𝑣 ) | |
| 34 | 1 | mopni2 | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ∧ 𝑃 ∈ 𝑣 ) → ∃ 𝑧 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ⊆ 𝑣 ) |
| 35 | 31 32 33 34 | syl3anc | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑣 ∈ 𝐽 ) ) ∧ 𝑃 ∈ 𝑣 ) → ∃ 𝑧 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ⊆ 𝑣 ) |
| 36 | sstr2 | ⊢ ( ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( 𝐹 “ 𝑣 ) → ( ( 𝐹 “ 𝑣 ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) → ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) | |
| 37 | imass2 | ⊢ ( ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ⊆ 𝑣 → ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( 𝐹 “ 𝑣 ) ) | |
| 38 | 36 37 | syl11 | ⊢ ( ( 𝐹 “ 𝑣 ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) → ( ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ⊆ 𝑣 → ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) |
| 39 | 38 | reximdv | ⊢ ( ( 𝐹 “ 𝑣 ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) → ( ∃ 𝑧 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ⊆ 𝑣 → ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) |
| 40 | 35 39 | syl5com | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑣 ∈ 𝐽 ) ) ∧ 𝑃 ∈ 𝑣 ) → ( ( 𝐹 “ 𝑣 ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) → ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) |
| 41 | 40 | expimpd | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑣 ∈ 𝐽 ) ) → ( ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) → ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) |
| 42 | 41 | expr | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝑣 ∈ 𝐽 → ( ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) → ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) |
| 43 | 42 | rexlimdv | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) → ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) |
| 44 | 29 43 | syld | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) → ( ∀ 𝑢 ∈ ran ( ball ‘ 𝐷 ) ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) → ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) |
| 45 | 44 | ralrimdva | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑢 ∈ ran ( ball ‘ 𝐷 ) ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) |
| 46 | simpl2 | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) | |
| 47 | blss | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑢 ∈ ran ( ball ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) → ∃ 𝑦 ∈ ℝ+ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝑢 ) | |
| 48 | 47 | 3expib | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) → ( ( 𝑢 ∈ ran ( ball ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) → ∃ 𝑦 ∈ ℝ+ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝑢 ) ) |
| 49 | 46 48 | syl | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ( 𝑢 ∈ ran ( ball ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) → ∃ 𝑦 ∈ ℝ+ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝑢 ) ) |
| 50 | r19.29r | ⊢ ( ( ∃ 𝑦 ∈ ℝ+ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝑢 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) → ∃ 𝑦 ∈ ℝ+ ( ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝑢 ∧ ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) | |
| 51 | 30 | ad3antrrr | ⊢ ( ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝑢 ) ∧ ( 𝑧 ∈ ℝ+ ∧ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 52 | 13 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝑢 ) ∧ ( 𝑧 ∈ ℝ+ ∧ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) → 𝑃 ∈ 𝑋 ) |
| 53 | rpxr | ⊢ ( 𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ* ) | |
| 54 | 53 | ad2antrl | ⊢ ( ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝑢 ) ∧ ( 𝑧 ∈ ℝ+ ∧ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) → 𝑧 ∈ ℝ* ) |
| 55 | 1 | blopn | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑧 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ∈ 𝐽 ) |
| 56 | 51 52 54 55 | syl3anc | ⊢ ( ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝑢 ) ∧ ( 𝑧 ∈ ℝ+ ∧ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) → ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ∈ 𝐽 ) |
| 57 | simprl | ⊢ ( ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝑢 ) ∧ ( 𝑧 ∈ ℝ+ ∧ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) → 𝑧 ∈ ℝ+ ) | |
| 58 | blcntr | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑧 ∈ ℝ+ ) → 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) | |
| 59 | 51 52 57 58 | syl3anc | ⊢ ( ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝑢 ) ∧ ( 𝑧 ∈ ℝ+ ∧ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) → 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) |
| 60 | sstr | ⊢ ( ( ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝑢 ) → ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ 𝑢 ) | |
| 61 | 60 | ad2ant2l | ⊢ ( ( ( 𝑧 ∈ ℝ+ ∧ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ∧ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝑢 ) ) → ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ 𝑢 ) |
| 62 | 61 | ancoms | ⊢ ( ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝑢 ) ∧ ( 𝑧 ∈ ℝ+ ∧ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) → ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ 𝑢 ) |
| 63 | eleq2 | ⊢ ( 𝑣 = ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) → ( 𝑃 ∈ 𝑣 ↔ 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ) | |
| 64 | imaeq2 | ⊢ ( 𝑣 = ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) → ( 𝐹 “ 𝑣 ) = ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ) | |
| 65 | 64 | sseq1d | ⊢ ( 𝑣 = ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) → ( ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ↔ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ 𝑢 ) ) |
| 66 | 63 65 | anbi12d | ⊢ ( 𝑣 = ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) → ( ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ↔ ( 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ∧ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ 𝑢 ) ) ) |
| 67 | 66 | rspcev | ⊢ ( ( ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ∈ 𝐽 ∧ ( 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ∧ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ 𝑢 ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 68 | 56 59 62 67 | syl12anc | ⊢ ( ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝑢 ) ∧ ( 𝑧 ∈ ℝ+ ∧ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 69 | 68 | expr | ⊢ ( ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝑢 ) ∧ 𝑧 ∈ ℝ+ ) → ( ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) |
| 70 | 69 | rexlimdva | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝑢 ) → ( ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) |
| 71 | 70 | expimpd | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝑢 ∧ ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) |
| 72 | 71 | rexlimdva | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∃ 𝑦 ∈ ℝ+ ( ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝑢 ∧ ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) |
| 73 | 50 72 | syl5 | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ( ∃ 𝑦 ∈ ℝ+ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝑢 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) |
| 74 | 73 | expd | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∃ 𝑦 ∈ ℝ+ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝑢 → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) ) |
| 75 | 49 74 | syld | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ( 𝑢 ∈ ran ( ball ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) ) |
| 76 | 75 | com23 | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) → ( ( 𝑢 ∈ ran ( ball ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) ) |
| 77 | 76 | exp4a | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) → ( 𝑢 ∈ ran ( ball ‘ 𝐷 ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) ) ) |
| 78 | 77 | ralrimdv | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) → ∀ 𝑢 ∈ ran ( ball ‘ 𝐷 ) ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) ) |
| 79 | 45 78 | impbid | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑢 ∈ ran ( ball ‘ 𝐷 ) ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) |
| 80 | 79 | pm5.32da | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ ran ( ball ‘ 𝐷 ) ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) |
| 81 | 10 80 | bitrd | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) |