This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any point P in a ball B can be centered in another ball that is a subset of B . (Contributed by NM, 31-Aug-2006) (Revised by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blss | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝑃 ∈ 𝐵 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blrn | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ↔ ∃ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ* 𝐵 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) | |
| 2 | elbl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) → ( 𝑃 ∈ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ↔ ( 𝑃 ∈ 𝑋 ∧ ( 𝑦 𝐷 𝑃 ) < 𝑟 ) ) ) | |
| 3 | simpl1 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 4 | simpl2 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) | |
| 5 | simpr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) → 𝑃 ∈ 𝑋 ) | |
| 6 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑦 𝐷 𝑃 ) ∈ ℝ* ) | |
| 7 | 3 4 5 6 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑦 𝐷 𝑃 ) ∈ ℝ* ) |
| 8 | simpl3 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) → 𝑟 ∈ ℝ* ) | |
| 9 | qbtwnxr | ⊢ ( ( ( 𝑦 𝐷 𝑃 ) ∈ ℝ* ∧ 𝑟 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑃 ) < 𝑟 ) → ∃ 𝑧 ∈ ℚ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) | |
| 10 | 9 | 3expia | ⊢ ( ( ( 𝑦 𝐷 𝑃 ) ∈ ℝ* ∧ 𝑟 ∈ ℝ* ) → ( ( 𝑦 𝐷 𝑃 ) < 𝑟 → ∃ 𝑧 ∈ ℚ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) |
| 11 | 7 8 10 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝑦 𝐷 𝑃 ) < 𝑟 → ∃ 𝑧 ∈ ℚ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) |
| 12 | qre | ⊢ ( 𝑧 ∈ ℚ → 𝑧 ∈ ℝ ) | |
| 13 | simpll1 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 14 | simplr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → 𝑃 ∈ 𝑋 ) | |
| 15 | simpll2 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → 𝑦 ∈ 𝑋 ) | |
| 16 | xmetsym | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑃 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑃 ) ) | |
| 17 | 13 14 15 16 | syl3anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → ( 𝑃 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑃 ) ) |
| 18 | simprrl | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → ( 𝑦 𝐷 𝑃 ) < 𝑧 ) | |
| 19 | 17 18 | eqbrtrd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → ( 𝑃 𝐷 𝑦 ) < 𝑧 ) |
| 20 | simprl | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → 𝑧 ∈ ℝ ) | |
| 21 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑃 𝐷 𝑦 ) ∈ ℝ* ) | |
| 22 | 13 14 15 21 | syl3anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → ( 𝑃 𝐷 𝑦 ) ∈ ℝ* ) |
| 23 | rexr | ⊢ ( 𝑧 ∈ ℝ → 𝑧 ∈ ℝ* ) | |
| 24 | 23 | ad2antrl | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → 𝑧 ∈ ℝ* ) |
| 25 | 22 24 19 | xrltled | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → ( 𝑃 𝐷 𝑦 ) ≤ 𝑧 ) |
| 26 | xmetlecl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( 𝑃 𝐷 𝑦 ) ≤ 𝑧 ) ) → ( 𝑃 𝐷 𝑦 ) ∈ ℝ ) | |
| 27 | 13 14 15 20 25 26 | syl122anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → ( 𝑃 𝐷 𝑦 ) ∈ ℝ ) |
| 28 | difrp | ⊢ ( ( ( 𝑃 𝐷 𝑦 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑃 𝐷 𝑦 ) < 𝑧 ↔ ( 𝑧 − ( 𝑃 𝐷 𝑦 ) ) ∈ ℝ+ ) ) | |
| 29 | 27 20 28 | syl2anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → ( ( 𝑃 𝐷 𝑦 ) < 𝑧 ↔ ( 𝑧 − ( 𝑃 𝐷 𝑦 ) ) ∈ ℝ+ ) ) |
| 30 | 19 29 | mpbid | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → ( 𝑧 − ( 𝑃 𝐷 𝑦 ) ) ∈ ℝ+ ) |
| 31 | 20 27 | resubcld | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → ( 𝑧 − ( 𝑃 𝐷 𝑦 ) ) ∈ ℝ ) |
| 32 | 22 | xrleidd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → ( 𝑃 𝐷 𝑦 ) ≤ ( 𝑃 𝐷 𝑦 ) ) |
| 33 | 20 | recnd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → 𝑧 ∈ ℂ ) |
| 34 | 27 | recnd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → ( 𝑃 𝐷 𝑦 ) ∈ ℂ ) |
| 35 | 33 34 | nncand | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → ( 𝑧 − ( 𝑧 − ( 𝑃 𝐷 𝑦 ) ) ) = ( 𝑃 𝐷 𝑦 ) ) |
| 36 | 32 35 | breqtrrd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → ( 𝑃 𝐷 𝑦 ) ≤ ( 𝑧 − ( 𝑧 − ( 𝑃 𝐷 𝑦 ) ) ) ) |
| 37 | blss2 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( ( 𝑧 − ( 𝑃 𝐷 𝑦 ) ) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ ( 𝑃 𝐷 𝑦 ) ≤ ( 𝑧 − ( 𝑧 − ( 𝑃 𝐷 𝑦 ) ) ) ) ) → ( 𝑃 ( ball ‘ 𝐷 ) ( 𝑧 − ( 𝑃 𝐷 𝑦 ) ) ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑧 ) ) | |
| 38 | 13 14 15 31 20 36 37 | syl33anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → ( 𝑃 ( ball ‘ 𝐷 ) ( 𝑧 − ( 𝑃 𝐷 𝑦 ) ) ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑧 ) ) |
| 39 | simpll3 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → 𝑟 ∈ ℝ* ) | |
| 40 | simprrr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → 𝑧 < 𝑟 ) | |
| 41 | 24 39 40 | xrltled | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → 𝑧 ≤ 𝑟 ) |
| 42 | ssbl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ* ∧ 𝑟 ∈ ℝ* ) ∧ 𝑧 ≤ 𝑟 ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) | |
| 43 | 13 15 24 39 41 42 | syl221anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 44 | 38 43 | sstrd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → ( 𝑃 ( ball ‘ 𝐷 ) ( 𝑧 − ( 𝑃 𝐷 𝑦 ) ) ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 45 | oveq2 | ⊢ ( 𝑥 = ( 𝑧 − ( 𝑃 𝐷 𝑦 ) ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) = ( 𝑃 ( ball ‘ 𝐷 ) ( 𝑧 − ( 𝑃 𝐷 𝑦 ) ) ) ) | |
| 46 | 45 | sseq1d | ⊢ ( 𝑥 = ( 𝑧 − ( 𝑃 𝐷 𝑦 ) ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ↔ ( 𝑃 ( ball ‘ 𝐷 ) ( 𝑧 − ( 𝑃 𝐷 𝑦 ) ) ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 47 | 46 | rspcev | ⊢ ( ( ( 𝑧 − ( 𝑃 𝐷 𝑦 ) ) ∈ ℝ+ ∧ ( 𝑃 ( ball ‘ 𝐷 ) ( 𝑧 − ( 𝑃 𝐷 𝑦 ) ) ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 48 | 30 44 47 | syl2anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 49 | 48 | expr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑧 ∈ ℝ ) → ( ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 50 | 12 49 | sylan2 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑧 ∈ ℚ ) → ( ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 51 | 50 | rexlimdva | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) → ( ∃ 𝑧 ∈ ℚ ( ( 𝑦 𝐷 𝑃 ) < 𝑧 ∧ 𝑧 < 𝑟 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 52 | 11 51 | syld | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝑦 𝐷 𝑃 ) < 𝑟 → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 53 | 52 | expimpd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) → ( ( 𝑃 ∈ 𝑋 ∧ ( 𝑦 𝐷 𝑃 ) < 𝑟 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 54 | 2 53 | sylbid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) → ( 𝑃 ∈ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 55 | eleq2 | ⊢ ( 𝐵 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) → ( 𝑃 ∈ 𝐵 ↔ 𝑃 ∈ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) | |
| 56 | sseq2 | ⊢ ( 𝐵 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐵 ↔ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) | |
| 57 | 56 | rexbidv | ⊢ ( 𝐵 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) → ( ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐵 ↔ ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 58 | 55 57 | imbi12d | ⊢ ( 𝐵 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) → ( ( 𝑃 ∈ 𝐵 → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐵 ) ↔ ( 𝑃 ∈ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ) |
| 59 | 54 58 | syl5ibrcom | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) → ( 𝐵 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) → ( 𝑃 ∈ 𝐵 → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐵 ) ) ) |
| 60 | 59 | 3expib | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) → ( 𝐵 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) → ( 𝑃 ∈ 𝐵 → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐵 ) ) ) ) |
| 61 | 60 | rexlimdvv | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ∃ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ* 𝐵 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) → ( 𝑃 ∈ 𝐵 → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐵 ) ) ) |
| 62 | 1 61 | sylbid | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) → ( 𝑃 ∈ 𝐵 → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐵 ) ) ) |
| 63 | 62 | 3imp | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝑃 ∈ 𝐵 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐵 ) |