This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant function is multilinear (additive and homogeneous for each row (matrices are given explicitly by their entries). Corollary 4.9 in Lang p. 515. (Contributed by SO, 16-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetero.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| mdetero.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| mdetero.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| mdetero.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| mdetero.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| mdetero.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mdetero.x | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) | ||
| mdetero.y | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑁 ) → 𝑌 ∈ 𝐾 ) | ||
| mdetero.z | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑍 ∈ 𝐾 ) | ||
| mdetero.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝐾 ) | ||
| mdetero.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) | ||
| mdetero.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑁 ) | ||
| mdetero.ij | ⊢ ( 𝜑 → 𝐼 ≠ 𝐽 ) | ||
| Assertion | mdetero | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + ( 𝑊 · 𝑌 ) ) , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) = ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetero.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| 2 | mdetero.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 3 | mdetero.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 4 | mdetero.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | mdetero.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 6 | mdetero.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 7 | mdetero.x | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) | |
| 8 | mdetero.y | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑁 ) → 𝑌 ∈ 𝐾 ) | |
| 9 | mdetero.z | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑍 ∈ 𝐾 ) | |
| 10 | mdetero.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝐾 ) | |
| 11 | mdetero.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) | |
| 12 | mdetero.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑁 ) | |
| 13 | mdetero.ij | ⊢ ( 𝜑 → 𝐼 ≠ 𝐽 ) | |
| 14 | 7 | 3adant2 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) |
| 15 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 16 | 5 15 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 18 | 10 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑊 ∈ 𝐾 ) |
| 19 | 8 | 3adant2 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑌 ∈ 𝐾 ) |
| 20 | 2 4 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑊 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑊 · 𝑌 ) ∈ 𝐾 ) |
| 21 | 17 18 19 20 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑊 · 𝑌 ) ∈ 𝐾 ) |
| 22 | 19 9 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ∈ 𝐾 ) |
| 23 | 1 2 3 5 6 14 21 22 11 | mdetrlin2 | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + ( 𝑊 · 𝑌 ) ) , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) = ( ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) + ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑊 · 𝑌 ) , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) ) ) |
| 24 | 1 2 4 5 6 19 22 10 11 | mdetrsca2 | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑊 · 𝑌 ) , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) = ( 𝑊 · ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) ) ) |
| 25 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 26 | 1 2 25 5 6 8 9 11 12 13 | mdetralt2 | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 27 | 26 | oveq2d | ⊢ ( 𝜑 → ( 𝑊 · ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) ) = ( 𝑊 · ( 0g ‘ 𝑅 ) ) ) |
| 28 | 2 4 25 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑊 ∈ 𝐾 ) → ( 𝑊 · ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 29 | 16 10 28 | syl2anc | ⊢ ( 𝜑 → ( 𝑊 · ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 30 | 24 27 29 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑊 · 𝑌 ) , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 31 | 30 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) + ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑊 · 𝑌 ) , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) ) = ( ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) + ( 0g ‘ 𝑅 ) ) ) |
| 32 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 33 | 16 32 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 34 | eqid | ⊢ ( 𝑁 Mat 𝑅 ) = ( 𝑁 Mat 𝑅 ) | |
| 35 | eqid | ⊢ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) | |
| 36 | 1 34 35 2 | mdetf | ⊢ ( 𝑅 ∈ CRing → 𝐷 : ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ⟶ 𝐾 ) |
| 37 | 5 36 | syl | ⊢ ( 𝜑 → 𝐷 : ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ⟶ 𝐾 ) |
| 38 | 14 22 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ∈ 𝐾 ) |
| 39 | 34 2 35 6 5 38 | matbas2d | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 40 | 37 39 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) ∈ 𝐾 ) |
| 41 | 2 3 25 | grprid | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) ∈ 𝐾 ) → ( ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) + ( 0g ‘ 𝑅 ) ) = ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) ) |
| 42 | 33 40 41 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) + ( 0g ‘ 𝑅 ) ) = ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) ) |
| 43 | 23 31 42 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + ( 𝑊 · 𝑌 ) ) , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) = ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) ) |