This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the matrix ring as a mapping operation. (Contributed by Stefan O'Rear, 11-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matbas2.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| matbas2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| matbas2i.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| matbas2d.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| matbas2d.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | ||
| matbas2d.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → 𝐶 ∈ 𝐾 ) | ||
| Assertion | matbas2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 𝐶 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matbas2.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | matbas2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 3 | matbas2i.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 4 | matbas2d.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 5 | matbas2d.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | |
| 6 | matbas2d.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → 𝐶 ∈ 𝐾 ) | |
| 7 | 6 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) → 𝐶 ∈ 𝐾 ) |
| 8 | 7 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 𝐶 ∈ 𝐾 ) |
| 9 | eqid | ⊢ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 𝐶 ) = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 𝐶 ) | |
| 10 | 9 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 𝐶 ∈ 𝐾 ↔ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 𝐶 ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) |
| 11 | 8 10 | sylib | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 𝐶 ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) |
| 12 | 1 2 | matbas2 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
| 13 | 4 5 12 | syl2anc | ⊢ ( 𝜑 → ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
| 14 | 3 13 | eqtr4id | ⊢ ( 𝜑 → 𝐵 = ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ) |
| 15 | 14 | eleq2d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 𝐶 ) ∈ 𝐵 ↔ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 𝐶 ) ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ) ) |
| 16 | 2 | fvexi | ⊢ 𝐾 ∈ V |
| 17 | 4 4 | xpexd | ⊢ ( 𝜑 → ( 𝑁 × 𝑁 ) ∈ V ) |
| 18 | elmapg | ⊢ ( ( 𝐾 ∈ V ∧ ( 𝑁 × 𝑁 ) ∈ V ) → ( ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 𝐶 ) ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ↔ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 𝐶 ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) ) | |
| 19 | 16 17 18 | sylancr | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 𝐶 ) ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ↔ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 𝐶 ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) ) |
| 20 | 15 19 | bitrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 𝐶 ) ∈ 𝐵 ↔ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 𝐶 ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) ) |
| 21 | 11 20 | mpbird | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 𝐶 ) ∈ 𝐵 ) |