This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant function is alternating regarding rows (matrix is given explicitly by its entries). (Contributed by SO, 16-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetralt2.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| mdetralt2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| mdetralt2.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mdetralt2.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| mdetralt2.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mdetralt2.x | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) | ||
| mdetralt2.y | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑌 ∈ 𝐾 ) | ||
| mdetralt2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) | ||
| mdetralt2.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑁 ) | ||
| mdetralt2.ij | ⊢ ( 𝜑 → 𝐼 ≠ 𝐽 ) | ||
| Assertion | mdetralt2 | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetralt2.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| 2 | mdetralt2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 3 | mdetralt2.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | mdetralt2.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 5 | mdetralt2.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 6 | mdetralt2.x | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) | |
| 7 | mdetralt2.y | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑌 ∈ 𝐾 ) | |
| 8 | mdetralt2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) | |
| 9 | mdetralt2.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑁 ) | |
| 10 | mdetralt2.ij | ⊢ ( 𝜑 → 𝐼 ≠ 𝐽 ) | |
| 11 | eqid | ⊢ ( 𝑁 Mat 𝑅 ) = ( 𝑁 Mat 𝑅 ) | |
| 12 | eqid | ⊢ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) | |
| 13 | 6 | 3adant2 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) |
| 14 | 13 7 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ∈ 𝐾 ) |
| 15 | 13 14 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ∈ 𝐾 ) |
| 16 | 11 2 12 5 4 15 | matbas2d | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 17 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ) ) | |
| 18 | iftrue | ⊢ ( 𝑖 = 𝐼 → if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) = 𝑋 ) | |
| 19 | 18 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑖 = 𝐼 ∧ 𝑗 = 𝑤 ) ) → if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) = 𝑋 ) |
| 20 | csbeq1a | ⊢ ( 𝑗 = 𝑤 → 𝑋 = ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ) | |
| 21 | 20 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑖 = 𝐼 ∧ 𝑗 = 𝑤 ) ) → 𝑋 = ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ) |
| 22 | 19 21 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑖 = 𝐼 ∧ 𝑗 = 𝑤 ) ) → if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) = ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ) |
| 23 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑖 = 𝐼 ) → 𝑁 = 𝑁 ) | |
| 24 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) → 𝐼 ∈ 𝑁 ) |
| 25 | simpr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) → 𝑤 ∈ 𝑁 ) | |
| 26 | nfv | ⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) | |
| 27 | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ 𝑤 / 𝑗 ⦌ 𝑋 | |
| 28 | 27 | nfel1 | ⊢ Ⅎ 𝑗 ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ∈ 𝐾 |
| 29 | 26 28 | nfim | ⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) → ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ∈ 𝐾 ) |
| 30 | eleq1w | ⊢ ( 𝑗 = 𝑤 → ( 𝑗 ∈ 𝑁 ↔ 𝑤 ∈ 𝑁 ) ) | |
| 31 | 30 | anbi2d | ⊢ ( 𝑗 = 𝑤 → ( ( 𝜑 ∧ 𝑗 ∈ 𝑁 ) ↔ ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) ) ) |
| 32 | 20 | eleq1d | ⊢ ( 𝑗 = 𝑤 → ( 𝑋 ∈ 𝐾 ↔ ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ∈ 𝐾 ) ) |
| 33 | 31 32 | imbi12d | ⊢ ( 𝑗 = 𝑤 → ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) ↔ ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) → ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ∈ 𝐾 ) ) ) |
| 34 | 29 33 6 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) → ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ∈ 𝐾 ) |
| 35 | nfv | ⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) | |
| 36 | nfcv | ⊢ Ⅎ 𝑗 𝐼 | |
| 37 | nfcv | ⊢ Ⅎ 𝑖 𝑤 | |
| 38 | nfcv | ⊢ Ⅎ 𝑖 ⦋ 𝑤 / 𝑗 ⦌ 𝑋 | |
| 39 | 17 22 23 24 25 34 35 26 36 37 38 27 | ovmpodxf | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) → ( 𝐼 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ) 𝑤 ) = ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ) |
| 40 | iftrue | ⊢ ( 𝑖 = 𝐽 → if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) = 𝑋 ) | |
| 41 | 40 | ifeq2d | ⊢ ( 𝑖 = 𝐽 → if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) = if ( 𝑖 = 𝐼 , 𝑋 , 𝑋 ) ) |
| 42 | ifid | ⊢ if ( 𝑖 = 𝐼 , 𝑋 , 𝑋 ) = 𝑋 | |
| 43 | 41 42 | eqtrdi | ⊢ ( 𝑖 = 𝐽 → if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) = 𝑋 ) |
| 44 | 43 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑖 = 𝐽 ∧ 𝑗 = 𝑤 ) ) → if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) = 𝑋 ) |
| 45 | 20 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑖 = 𝐽 ∧ 𝑗 = 𝑤 ) ) → 𝑋 = ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ) |
| 46 | 44 45 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑖 = 𝐽 ∧ 𝑗 = 𝑤 ) ) → if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) = ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ) |
| 47 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑖 = 𝐽 ) → 𝑁 = 𝑁 ) | |
| 48 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) → 𝐽 ∈ 𝑁 ) |
| 49 | nfcv | ⊢ Ⅎ 𝑗 𝐽 | |
| 50 | 17 46 47 48 25 34 35 26 49 37 38 27 | ovmpodxf | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) → ( 𝐽 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ) 𝑤 ) = ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ) |
| 51 | 39 50 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) → ( 𝐼 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ) 𝑤 ) = ( 𝐽 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ) 𝑤 ) ) |
| 52 | 51 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑁 ( 𝐼 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ) 𝑤 ) = ( 𝐽 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ) 𝑤 ) ) |
| 53 | 1 11 12 3 4 16 8 9 10 52 | mdetralt | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ) ) = 0 ) |