This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant function is multilinear (additive and homogeneous for each row (matrices are given explicitly by their entries). Corollary 4.9 in Lang p. 515. (Contributed by SO, 16-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetero.d | |- D = ( N maDet R ) |
|
| mdetero.k | |- K = ( Base ` R ) |
||
| mdetero.p | |- .+ = ( +g ` R ) |
||
| mdetero.t | |- .x. = ( .r ` R ) |
||
| mdetero.r | |- ( ph -> R e. CRing ) |
||
| mdetero.n | |- ( ph -> N e. Fin ) |
||
| mdetero.x | |- ( ( ph /\ j e. N ) -> X e. K ) |
||
| mdetero.y | |- ( ( ph /\ j e. N ) -> Y e. K ) |
||
| mdetero.z | |- ( ( ph /\ i e. N /\ j e. N ) -> Z e. K ) |
||
| mdetero.w | |- ( ph -> W e. K ) |
||
| mdetero.i | |- ( ph -> I e. N ) |
||
| mdetero.j | |- ( ph -> J e. N ) |
||
| mdetero.ij | |- ( ph -> I =/= J ) |
||
| Assertion | mdetero | |- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , ( X .+ ( W .x. Y ) ) , if ( i = J , Y , Z ) ) ) ) = ( D ` ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , Y , Z ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetero.d | |- D = ( N maDet R ) |
|
| 2 | mdetero.k | |- K = ( Base ` R ) |
|
| 3 | mdetero.p | |- .+ = ( +g ` R ) |
|
| 4 | mdetero.t | |- .x. = ( .r ` R ) |
|
| 5 | mdetero.r | |- ( ph -> R e. CRing ) |
|
| 6 | mdetero.n | |- ( ph -> N e. Fin ) |
|
| 7 | mdetero.x | |- ( ( ph /\ j e. N ) -> X e. K ) |
|
| 8 | mdetero.y | |- ( ( ph /\ j e. N ) -> Y e. K ) |
|
| 9 | mdetero.z | |- ( ( ph /\ i e. N /\ j e. N ) -> Z e. K ) |
|
| 10 | mdetero.w | |- ( ph -> W e. K ) |
|
| 11 | mdetero.i | |- ( ph -> I e. N ) |
|
| 12 | mdetero.j | |- ( ph -> J e. N ) |
|
| 13 | mdetero.ij | |- ( ph -> I =/= J ) |
|
| 14 | 7 | 3adant2 | |- ( ( ph /\ i e. N /\ j e. N ) -> X e. K ) |
| 15 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 16 | 5 15 | syl | |- ( ph -> R e. Ring ) |
| 17 | 16 | 3ad2ant1 | |- ( ( ph /\ i e. N /\ j e. N ) -> R e. Ring ) |
| 18 | 10 | 3ad2ant1 | |- ( ( ph /\ i e. N /\ j e. N ) -> W e. K ) |
| 19 | 8 | 3adant2 | |- ( ( ph /\ i e. N /\ j e. N ) -> Y e. K ) |
| 20 | 2 4 | ringcl | |- ( ( R e. Ring /\ W e. K /\ Y e. K ) -> ( W .x. Y ) e. K ) |
| 21 | 17 18 19 20 | syl3anc | |- ( ( ph /\ i e. N /\ j e. N ) -> ( W .x. Y ) e. K ) |
| 22 | 19 9 | ifcld | |- ( ( ph /\ i e. N /\ j e. N ) -> if ( i = J , Y , Z ) e. K ) |
| 23 | 1 2 3 5 6 14 21 22 11 | mdetrlin2 | |- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , ( X .+ ( W .x. Y ) ) , if ( i = J , Y , Z ) ) ) ) = ( ( D ` ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , Y , Z ) ) ) ) .+ ( D ` ( i e. N , j e. N |-> if ( i = I , ( W .x. Y ) , if ( i = J , Y , Z ) ) ) ) ) ) |
| 24 | 1 2 4 5 6 19 22 10 11 | mdetrsca2 | |- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , ( W .x. Y ) , if ( i = J , Y , Z ) ) ) ) = ( W .x. ( D ` ( i e. N , j e. N |-> if ( i = I , Y , if ( i = J , Y , Z ) ) ) ) ) ) |
| 25 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 26 | 1 2 25 5 6 8 9 11 12 13 | mdetralt2 | |- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , Y , if ( i = J , Y , Z ) ) ) ) = ( 0g ` R ) ) |
| 27 | 26 | oveq2d | |- ( ph -> ( W .x. ( D ` ( i e. N , j e. N |-> if ( i = I , Y , if ( i = J , Y , Z ) ) ) ) ) = ( W .x. ( 0g ` R ) ) ) |
| 28 | 2 4 25 | ringrz | |- ( ( R e. Ring /\ W e. K ) -> ( W .x. ( 0g ` R ) ) = ( 0g ` R ) ) |
| 29 | 16 10 28 | syl2anc | |- ( ph -> ( W .x. ( 0g ` R ) ) = ( 0g ` R ) ) |
| 30 | 24 27 29 | 3eqtrd | |- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , ( W .x. Y ) , if ( i = J , Y , Z ) ) ) ) = ( 0g ` R ) ) |
| 31 | 30 | oveq2d | |- ( ph -> ( ( D ` ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , Y , Z ) ) ) ) .+ ( D ` ( i e. N , j e. N |-> if ( i = I , ( W .x. Y ) , if ( i = J , Y , Z ) ) ) ) ) = ( ( D ` ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , Y , Z ) ) ) ) .+ ( 0g ` R ) ) ) |
| 32 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 33 | 16 32 | syl | |- ( ph -> R e. Grp ) |
| 34 | eqid | |- ( N Mat R ) = ( N Mat R ) |
|
| 35 | eqid | |- ( Base ` ( N Mat R ) ) = ( Base ` ( N Mat R ) ) |
|
| 36 | 1 34 35 2 | mdetf | |- ( R e. CRing -> D : ( Base ` ( N Mat R ) ) --> K ) |
| 37 | 5 36 | syl | |- ( ph -> D : ( Base ` ( N Mat R ) ) --> K ) |
| 38 | 14 22 | ifcld | |- ( ( ph /\ i e. N /\ j e. N ) -> if ( i = I , X , if ( i = J , Y , Z ) ) e. K ) |
| 39 | 34 2 35 6 5 38 | matbas2d | |- ( ph -> ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , Y , Z ) ) ) e. ( Base ` ( N Mat R ) ) ) |
| 40 | 37 39 | ffvelcdmd | |- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , Y , Z ) ) ) ) e. K ) |
| 41 | 2 3 25 | grprid | |- ( ( R e. Grp /\ ( D ` ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , Y , Z ) ) ) ) e. K ) -> ( ( D ` ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , Y , Z ) ) ) ) .+ ( 0g ` R ) ) = ( D ` ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , Y , Z ) ) ) ) ) |
| 42 | 33 40 41 | syl2anc | |- ( ph -> ( ( D ` ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , Y , Z ) ) ) ) .+ ( 0g ` R ) ) = ( D ` ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , Y , Z ) ) ) ) ) |
| 43 | 23 31 42 | 3eqtrd | |- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , ( X .+ ( W .x. Y ) ) , if ( i = J , Y , Z ) ) ) ) = ( D ` ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , Y , Z ) ) ) ) ) |