This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Determinant is invariant under transposition. Proposition 4.8 in Lang p. 514. (Contributed by Stefan O'Rear, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdettpos.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| mdettpos.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | ||
| mdettpos.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| Assertion | mdettpos | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐷 ‘ tpos 𝑀 ) = ( 𝐷 ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdettpos.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| 2 | mdettpos.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 3 | mdettpos.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 4 | ovtpos | ⊢ ( ( 𝑝 ‘ 𝑥 ) tpos 𝑀 𝑥 ) = ( 𝑥 𝑀 ( 𝑝 ‘ 𝑥 ) ) | |
| 5 | 4 | mpteq2i | ⊢ ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) tpos 𝑀 𝑥 ) ) = ( 𝑥 ∈ 𝑁 ↦ ( 𝑥 𝑀 ( 𝑝 ‘ 𝑥 ) ) ) |
| 6 | 5 | oveq2i | ⊢ ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) tpos 𝑀 𝑥 ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑥 𝑀 ( 𝑝 ‘ 𝑥 ) ) ) ) |
| 7 | 6 | oveq2i | ⊢ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) tpos 𝑀 𝑥 ) ) ) ) = ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑥 𝑀 ( 𝑝 ‘ 𝑥 ) ) ) ) ) |
| 8 | 7 | mpteq2i | ⊢ ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) tpos 𝑀 𝑥 ) ) ) ) ) = ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑥 𝑀 ( 𝑝 ‘ 𝑥 ) ) ) ) ) ) |
| 9 | 8 | oveq2i | ⊢ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) tpos 𝑀 𝑥 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑥 𝑀 ( 𝑝 ‘ 𝑥 ) ) ) ) ) ) ) |
| 10 | 2 3 | mattposcl | ⊢ ( 𝑀 ∈ 𝐵 → tpos 𝑀 ∈ 𝐵 ) |
| 11 | 10 | adantl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → tpos 𝑀 ∈ 𝐵 ) |
| 12 | eqid | ⊢ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 13 | eqid | ⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) | |
| 14 | eqid | ⊢ ( pmSgn ‘ 𝑁 ) = ( pmSgn ‘ 𝑁 ) | |
| 15 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 16 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 17 | 1 2 3 12 13 14 15 16 | mdetleib | ⊢ ( tpos 𝑀 ∈ 𝐵 → ( 𝐷 ‘ tpos 𝑀 ) = ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) tpos 𝑀 𝑥 ) ) ) ) ) ) ) |
| 18 | 11 17 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐷 ‘ tpos 𝑀 ) = ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) tpos 𝑀 𝑥 ) ) ) ) ) ) ) |
| 19 | 1 2 3 12 13 14 15 16 | mdetleib2 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐷 ‘ 𝑀 ) = ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑥 𝑀 ( 𝑝 ‘ 𝑥 ) ) ) ) ) ) ) ) |
| 20 | 9 18 19 | 3eqtr4a | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐷 ‘ tpos 𝑀 ) = ( 𝐷 ‘ 𝑀 ) ) |