This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant function is additive for each row (matrices are given explicitly by their entries). (Contributed by SO, 16-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetrlin2.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| mdetrlin2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| mdetrlin2.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| mdetrlin2.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| mdetrlin2.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mdetrlin2.x | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) | ||
| mdetrlin2.y | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑌 ∈ 𝐾 ) | ||
| mdetrlin2.z | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑍 ∈ 𝐾 ) | ||
| mdetrlin2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) | ||
| Assertion | mdetrlin2 | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ) = ( ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ) + ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetrlin2.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| 2 | mdetrlin2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 3 | mdetrlin2.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 4 | mdetrlin2.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 5 | mdetrlin2.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 6 | mdetrlin2.x | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) | |
| 7 | mdetrlin2.y | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑌 ∈ 𝐾 ) | |
| 8 | mdetrlin2.z | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑍 ∈ 𝐾 ) | |
| 9 | mdetrlin2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) | |
| 10 | eqid | ⊢ ( 𝑁 Mat 𝑅 ) = ( 𝑁 Mat 𝑅 ) | |
| 11 | eqid | ⊢ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) | |
| 12 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 13 | 4 12 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 15 | 2 3 | ringacl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 ) |
| 16 | 14 6 7 15 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 ) |
| 17 | 16 8 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ∈ 𝐾 ) |
| 18 | 10 2 11 5 4 17 | matbas2d | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 19 | 6 8 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ∈ 𝐾 ) |
| 20 | 10 2 11 5 4 19 | matbas2d | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 21 | 7 8 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ∈ 𝐾 ) |
| 22 | 10 2 11 5 4 21 | matbas2d | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 23 | snex | ⊢ { 𝐼 } ∈ V | |
| 24 | 23 | a1i | ⊢ ( 𝜑 → { 𝐼 } ∈ V ) |
| 25 | 9 | snssd | ⊢ ( 𝜑 → { 𝐼 } ⊆ 𝑁 ) |
| 26 | 25 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐼 } ∧ 𝑗 ∈ 𝑁 ) → { 𝐼 } ⊆ 𝑁 ) |
| 27 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐼 } ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ { 𝐼 } ) | |
| 28 | 26 27 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐼 } ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
| 29 | 28 6 | syld3an2 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐼 } ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) |
| 30 | 28 7 | syld3an2 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐼 } ∧ 𝑗 ∈ 𝑁 ) → 𝑌 ∈ 𝐾 ) |
| 31 | eqidd | ⊢ ( 𝜑 → ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑋 ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑋 ) ) | |
| 32 | eqidd | ⊢ ( 𝜑 → ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑌 ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑌 ) ) | |
| 33 | 24 5 29 30 31 32 | offval22 | ⊢ ( 𝜑 → ( ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑋 ) ∘f + ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑌 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ ( 𝑋 + 𝑌 ) ) ) |
| 34 | 33 | eqcomd | ⊢ ( 𝜑 → ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ ( 𝑋 + 𝑌 ) ) = ( ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑋 ) ∘f + ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑌 ) ) ) |
| 35 | mposnif | ⊢ ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ ( 𝑋 + 𝑌 ) ) | |
| 36 | mposnif | ⊢ ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑋 ) | |
| 37 | mposnif | ⊢ ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑌 ) | |
| 38 | 36 37 | oveq12i | ⊢ ( ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ∘f + ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ) = ( ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑋 ) ∘f + ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑌 ) ) |
| 39 | 34 35 38 | 3eqtr4g | ⊢ ( 𝜑 → ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) = ( ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ∘f + ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ) ) |
| 40 | ssid | ⊢ 𝑁 ⊆ 𝑁 | |
| 41 | resmpo | ⊢ ( ( { 𝐼 } ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ) | |
| 42 | 25 40 41 | sylancl | ⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ) |
| 43 | resmpo | ⊢ ( ( { 𝐼 } ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ) | |
| 44 | 25 40 43 | sylancl | ⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ) |
| 45 | resmpo | ⊢ ( ( { 𝐼 } ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ) | |
| 46 | 25 40 45 | sylancl | ⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ) |
| 47 | 44 46 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) ∘f + ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) ) = ( ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ∘f + ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ) ) |
| 48 | 39 42 47 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) = ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) ∘f + ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) ) ) |
| 49 | eldifsni | ⊢ ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) → 𝑖 ≠ 𝐼 ) | |
| 50 | 49 | neneqd | ⊢ ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) → ¬ 𝑖 = 𝐼 ) |
| 51 | iffalse | ⊢ ( ¬ 𝑖 = 𝐼 → if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) = 𝑍 ) | |
| 52 | iffalse | ⊢ ( ¬ 𝑖 = 𝐼 → if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) = 𝑍 ) | |
| 53 | 51 52 | eqtr4d | ⊢ ( ¬ 𝑖 = 𝐼 → if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) = if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) |
| 54 | 50 53 | syl | ⊢ ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) → if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) = if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) |
| 55 | 54 | 3ad2ant2 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) = if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) |
| 56 | 55 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ) |
| 57 | difss | ⊢ ( 𝑁 ∖ { 𝐼 } ) ⊆ 𝑁 | |
| 58 | resmpo | ⊢ ( ( ( 𝑁 ∖ { 𝐼 } ) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ) | |
| 59 | 57 40 58 | mp2an | ⊢ ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) |
| 60 | resmpo | ⊢ ( ( ( 𝑁 ∖ { 𝐼 } ) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ) | |
| 61 | 57 40 60 | mp2an | ⊢ ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) |
| 62 | 56 59 61 | 3eqtr4g | ⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) = ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) ) |
| 63 | iffalse | ⊢ ( ¬ 𝑖 = 𝐼 → if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) = 𝑍 ) | |
| 64 | 51 63 | eqtr4d | ⊢ ( ¬ 𝑖 = 𝐼 → if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) = if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) |
| 65 | 50 64 | syl | ⊢ ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) → if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) = if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) |
| 66 | 65 | 3ad2ant2 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) = if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) |
| 67 | 66 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ) |
| 68 | resmpo | ⊢ ( ( ( 𝑁 ∖ { 𝐼 } ) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ) | |
| 69 | 57 40 68 | mp2an | ⊢ ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) |
| 70 | 67 59 69 | 3eqtr4g | ⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) = ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) ) |
| 71 | 1 10 11 3 4 18 20 22 9 48 62 70 | mdetrlin | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ) = ( ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ) + ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ) ) ) |