This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant function is homogeneous for each row (matrices are given explicitly by their entries). (Contributed by SO, 16-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetrsca2.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| mdetrsca2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| mdetrsca2.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| mdetrsca2.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| mdetrsca2.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mdetrsca2.x | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) | ||
| mdetrsca2.y | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑌 ∈ 𝐾 ) | ||
| mdetrsca2.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐾 ) | ||
| mdetrsca2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) | ||
| Assertion | mdetrsca2 | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝐹 · 𝑋 ) , 𝑌 ) ) ) = ( 𝐹 · ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetrsca2.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| 2 | mdetrsca2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 3 | mdetrsca2.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | mdetrsca2.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 5 | mdetrsca2.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 6 | mdetrsca2.x | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) | |
| 7 | mdetrsca2.y | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑌 ∈ 𝐾 ) | |
| 8 | mdetrsca2.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐾 ) | |
| 9 | mdetrsca2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) | |
| 10 | eqid | ⊢ ( 𝑁 Mat 𝑅 ) = ( 𝑁 Mat 𝑅 ) | |
| 11 | eqid | ⊢ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) | |
| 12 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 13 | 4 12 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 15 | 8 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝐹 ∈ 𝐾 ) |
| 16 | 2 3 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑋 ∈ 𝐾 ) → ( 𝐹 · 𝑋 ) ∈ 𝐾 ) |
| 17 | 14 15 6 16 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝐹 · 𝑋 ) ∈ 𝐾 ) |
| 18 | 17 7 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐼 , ( 𝐹 · 𝑋 ) , 𝑌 ) ∈ 𝐾 ) |
| 19 | 10 2 11 5 4 18 | matbas2d | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝐹 · 𝑋 ) , 𝑌 ) ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 20 | 6 7 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ∈ 𝐾 ) |
| 21 | 10 2 11 5 4 20 | matbas2d | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 22 | snex | ⊢ { 𝐼 } ∈ V | |
| 23 | 22 | a1i | ⊢ ( 𝜑 → { 𝐼 } ∈ V ) |
| 24 | 8 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐼 } ∧ 𝑗 ∈ 𝑁 ) → 𝐹 ∈ 𝐾 ) |
| 25 | 9 | snssd | ⊢ ( 𝜑 → { 𝐼 } ⊆ 𝑁 ) |
| 26 | 25 | sselda | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐼 } ) → 𝑖 ∈ 𝑁 ) |
| 27 | 26 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐼 } ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
| 28 | 27 6 | syld3an2 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐼 } ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) |
| 29 | fconstmpo | ⊢ ( ( { 𝐼 } × 𝑁 ) × { 𝐹 } ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝐹 ) | |
| 30 | 29 | a1i | ⊢ ( 𝜑 → ( ( { 𝐼 } × 𝑁 ) × { 𝐹 } ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝐹 ) ) |
| 31 | eqidd | ⊢ ( 𝜑 → ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑋 ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑋 ) ) | |
| 32 | 23 5 24 28 30 31 | offval22 | ⊢ ( 𝜑 → ( ( ( { 𝐼 } × 𝑁 ) × { 𝐹 } ) ∘f · ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑋 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ ( 𝐹 · 𝑋 ) ) ) |
| 33 | mposnif | ⊢ ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑋 ) | |
| 34 | 33 | oveq2i | ⊢ ( ( ( { 𝐼 } × 𝑁 ) × { 𝐹 } ) ∘f · ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ) ) = ( ( ( { 𝐼 } × 𝑁 ) × { 𝐹 } ) ∘f · ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑋 ) ) |
| 35 | mposnif | ⊢ ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝐹 · 𝑋 ) , 𝑌 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ ( 𝐹 · 𝑋 ) ) | |
| 36 | 32 34 35 | 3eqtr4g | ⊢ ( 𝜑 → ( ( ( { 𝐼 } × 𝑁 ) × { 𝐹 } ) ∘f · ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝐹 · 𝑋 ) , 𝑌 ) ) ) |
| 37 | ssid | ⊢ 𝑁 ⊆ 𝑁 | |
| 38 | resmpo | ⊢ ( ( { 𝐼 } ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ) ) | |
| 39 | 25 37 38 | sylancl | ⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ) ) |
| 40 | 39 | oveq2d | ⊢ ( 𝜑 → ( ( ( { 𝐼 } × 𝑁 ) × { 𝐹 } ) ∘f · ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) ) = ( ( ( { 𝐼 } × 𝑁 ) × { 𝐹 } ) ∘f · ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ) ) ) |
| 41 | resmpo | ⊢ ( ( { 𝐼 } ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝐹 · 𝑋 ) , 𝑌 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝐹 · 𝑋 ) , 𝑌 ) ) ) | |
| 42 | 25 37 41 | sylancl | ⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝐹 · 𝑋 ) , 𝑌 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝐹 · 𝑋 ) , 𝑌 ) ) ) |
| 43 | 36 40 42 | 3eqtr4rd | ⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝐹 · 𝑋 ) , 𝑌 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) = ( ( ( { 𝐼 } × 𝑁 ) × { 𝐹 } ) ∘f · ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) ) ) |
| 44 | eldifsni | ⊢ ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) → 𝑖 ≠ 𝐼 ) | |
| 45 | 44 | 3ad2ant2 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ≠ 𝐼 ) |
| 46 | 45 | neneqd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) ∧ 𝑗 ∈ 𝑁 ) → ¬ 𝑖 = 𝐼 ) |
| 47 | iffalse | ⊢ ( ¬ 𝑖 = 𝐼 → if ( 𝑖 = 𝐼 , ( 𝐹 · 𝑋 ) , 𝑌 ) = 𝑌 ) | |
| 48 | iffalse | ⊢ ( ¬ 𝑖 = 𝐼 → if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) = 𝑌 ) | |
| 49 | 47 48 | eqtr4d | ⊢ ( ¬ 𝑖 = 𝐼 → if ( 𝑖 = 𝐼 , ( 𝐹 · 𝑋 ) , 𝑌 ) = if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ) |
| 50 | 46 49 | syl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐼 , ( 𝐹 · 𝑋 ) , 𝑌 ) = if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ) |
| 51 | 50 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝐹 · 𝑋 ) , 𝑌 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ) ) |
| 52 | difss | ⊢ ( 𝑁 ∖ { 𝐼 } ) ⊆ 𝑁 | |
| 53 | resmpo | ⊢ ( ( ( 𝑁 ∖ { 𝐼 } ) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝐹 · 𝑋 ) , 𝑌 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝐹 · 𝑋 ) , 𝑌 ) ) ) | |
| 54 | 52 37 53 | mp2an | ⊢ ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝐹 · 𝑋 ) , 𝑌 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝐹 · 𝑋 ) , 𝑌 ) ) |
| 55 | resmpo | ⊢ ( ( ( 𝑁 ∖ { 𝐼 } ) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ) ) | |
| 56 | 52 37 55 | mp2an | ⊢ ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ) |
| 57 | 51 54 56 | 3eqtr4g | ⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝐹 · 𝑋 ) , 𝑌 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) = ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) ) |
| 58 | 1 10 11 2 3 4 19 8 21 9 43 57 | mdetrsca | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝐹 · 𝑋 ) , 𝑌 ) ) ) = ( 𝐹 · ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑌 ) ) ) ) ) |