This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite product of functions to complex numbers from a common topological space is continuous. Induction step. (Contributed by Glauco Siliprandi, 8-Apr-2021) Avoid ax-mulf . (Revised by GG, 19-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodcnlem.1 | ⊢ Ⅎ 𝑘 𝜑 | |
| fprodcnlem.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| fprodcnlem.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| fprodcnlem.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fprodcnlem.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| fprodcnlem.z | ⊢ ( 𝜑 → 𝑍 ⊆ 𝐴 ) | ||
| fprodcnlem.w | ⊢ ( 𝜑 → 𝑊 ∈ ( 𝐴 ∖ 𝑍 ) ) | ||
| fprodcnlem.p | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑍 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| Assertion | fprodcnlem | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑍 ∪ { 𝑊 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodcnlem.1 | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | fprodcnlem.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 3 | fprodcnlem.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 4 | fprodcnlem.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 5 | fprodcnlem.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 6 | fprodcnlem.z | ⊢ ( 𝜑 → 𝑍 ⊆ 𝐴 ) | |
| 7 | fprodcnlem.w | ⊢ ( 𝜑 → 𝑊 ∈ ( 𝐴 ∖ 𝑍 ) ) | |
| 8 | fprodcnlem.p | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑍 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 9 | nfv | ⊢ Ⅎ 𝑘 𝑥 ∈ 𝑋 | |
| 10 | 1 9 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) |
| 11 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑊 / 𝑘 ⦌ 𝐵 | |
| 12 | 4 6 | ssfid | ⊢ ( 𝜑 → 𝑍 ∈ Fin ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑍 ∈ Fin ) |
| 14 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑊 ∈ ( 𝐴 ∖ 𝑍 ) ) |
| 15 | 14 | eldifbd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ¬ 𝑊 ∈ 𝑍 ) |
| 16 | 6 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝐴 ) |
| 17 | 16 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝐴 ) |
| 18 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 19 | 2 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 20 | 19 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 21 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℂ ) | |
| 22 | 18 20 5 21 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℂ ) |
| 23 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) | |
| 24 | 23 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℂ ↔ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℂ ) |
| 25 | 22 24 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℂ ) |
| 26 | 25 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℂ ) |
| 27 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑥 ∈ 𝑋 ) | |
| 28 | rspa | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) | |
| 29 | 26 27 28 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 30 | 17 29 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
| 31 | csbeq1a | ⊢ ( 𝑘 = 𝑊 → 𝐵 = ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) | |
| 32 | 14 | eldifad | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑊 ∈ 𝐴 ) |
| 33 | nfv | ⊢ Ⅎ 𝑘 𝑊 ∈ 𝐴 | |
| 34 | 10 33 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑊 ∈ 𝐴 ) |
| 35 | 11 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ∈ ℂ |
| 36 | 34 35 | nfim | ⊢ Ⅎ 𝑘 ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑊 ∈ 𝐴 ) → ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 37 | eleq1 | ⊢ ( 𝑘 = 𝑊 → ( 𝑘 ∈ 𝐴 ↔ 𝑊 ∈ 𝐴 ) ) | |
| 38 | 37 | anbi2d | ⊢ ( 𝑘 = 𝑊 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑊 ∈ 𝐴 ) ) ) |
| 39 | 31 | eleq1d | ⊢ ( 𝑘 = 𝑊 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 40 | 38 39 | imbi12d | ⊢ ( 𝑘 = 𝑊 → ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑊 ∈ 𝐴 ) → ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) ) |
| 41 | 36 40 29 | vtoclg1f | ⊢ ( 𝑊 ∈ 𝐴 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑊 ∈ 𝐴 ) → ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 42 | 41 | anabsi7 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑊 ∈ 𝐴 ) → ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 43 | 32 42 | mpdan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 44 | 10 11 13 14 15 30 31 43 | fprodsplitsn | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∏ 𝑘 ∈ ( 𝑍 ∪ { 𝑊 } ) 𝐵 = ( ∏ 𝑘 ∈ 𝑍 𝐵 · ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ) |
| 45 | 44 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑍 ∪ { 𝑊 } ) 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ( ∏ 𝑘 ∈ 𝑍 𝐵 · ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ) ) |
| 46 | 7 | eldifad | ⊢ ( 𝜑 → 𝑊 ∈ 𝐴 ) |
| 47 | 1 33 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑊 ∈ 𝐴 ) |
| 48 | nfcv | ⊢ Ⅎ 𝑘 𝑋 | |
| 49 | 48 11 | nfmpt | ⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) |
| 50 | 49 | nfel1 | ⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) |
| 51 | 47 50 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑊 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 52 | 37 | anbi2d | ⊢ ( 𝑘 = 𝑊 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑊 ∈ 𝐴 ) ) ) |
| 53 | 31 | mpteq2dv | ⊢ ( 𝑘 = 𝑊 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ) |
| 54 | 53 | eleq1d | ⊢ ( 𝑘 = 𝑊 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 55 | 52 54 | imbi12d | ⊢ ( 𝑘 = 𝑊 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ↔ ( ( 𝜑 ∧ 𝑊 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) |
| 56 | 51 55 5 | vtoclg1f | ⊢ ( 𝑊 ∈ 𝐴 → ( ( 𝜑 ∧ 𝑊 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 57 | 56 | anabsi7 | ⊢ ( ( 𝜑 ∧ 𝑊 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 58 | 46 57 | mpdan | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 59 | 19 | a1i | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 60 | 2 | mpomulcn | ⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
| 61 | 60 | a1i | ⊢ ( 𝜑 → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ) |
| 62 | oveq12 | ⊢ ( ( 𝑢 = ∏ 𝑘 ∈ 𝑍 𝐵 ∧ 𝑣 = ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) → ( 𝑢 · 𝑣 ) = ( ∏ 𝑘 ∈ 𝑍 𝐵 · ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ) | |
| 63 | 3 8 58 59 59 61 62 | cnmpt12 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ∏ 𝑘 ∈ 𝑍 𝐵 · ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 64 | 45 63 | eqeltrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑍 ∪ { 𝑊 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |