This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of two measurable functions is measurable. (Contributed by Mario Carneiro, 5-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfadd.1 | |- ( ph -> F e. MblFn ) |
|
| mbfadd.2 | |- ( ph -> G e. MblFn ) |
||
| Assertion | mbfsub | |- ( ph -> ( F oF - G ) e. MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfadd.1 | |- ( ph -> F e. MblFn ) |
|
| 2 | mbfadd.2 | |- ( ph -> G e. MblFn ) |
|
| 3 | mbff | |- ( F e. MblFn -> F : dom F --> CC ) |
|
| 4 | 1 3 | syl | |- ( ph -> F : dom F --> CC ) |
| 5 | elinel1 | |- ( x e. ( dom F i^i dom G ) -> x e. dom F ) |
|
| 6 | ffvelcdm | |- ( ( F : dom F --> CC /\ x e. dom F ) -> ( F ` x ) e. CC ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( ph /\ x e. ( dom F i^i dom G ) ) -> ( F ` x ) e. CC ) |
| 8 | mbff | |- ( G e. MblFn -> G : dom G --> CC ) |
|
| 9 | 2 8 | syl | |- ( ph -> G : dom G --> CC ) |
| 10 | elinel2 | |- ( x e. ( dom F i^i dom G ) -> x e. dom G ) |
|
| 11 | ffvelcdm | |- ( ( G : dom G --> CC /\ x e. dom G ) -> ( G ` x ) e. CC ) |
|
| 12 | 9 10 11 | syl2an | |- ( ( ph /\ x e. ( dom F i^i dom G ) ) -> ( G ` x ) e. CC ) |
| 13 | 7 12 | negsubd | |- ( ( ph /\ x e. ( dom F i^i dom G ) ) -> ( ( F ` x ) + -u ( G ` x ) ) = ( ( F ` x ) - ( G ` x ) ) ) |
| 14 | 13 | eqcomd | |- ( ( ph /\ x e. ( dom F i^i dom G ) ) -> ( ( F ` x ) - ( G ` x ) ) = ( ( F ` x ) + -u ( G ` x ) ) ) |
| 15 | 14 | mpteq2dva | |- ( ph -> ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) - ( G ` x ) ) ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) + -u ( G ` x ) ) ) ) |
| 16 | 4 | ffnd | |- ( ph -> F Fn dom F ) |
| 17 | 9 | ffnd | |- ( ph -> G Fn dom G ) |
| 18 | mbfdm | |- ( F e. MblFn -> dom F e. dom vol ) |
|
| 19 | 1 18 | syl | |- ( ph -> dom F e. dom vol ) |
| 20 | mbfdm | |- ( G e. MblFn -> dom G e. dom vol ) |
|
| 21 | 2 20 | syl | |- ( ph -> dom G e. dom vol ) |
| 22 | eqid | |- ( dom F i^i dom G ) = ( dom F i^i dom G ) |
|
| 23 | eqidd | |- ( ( ph /\ x e. dom F ) -> ( F ` x ) = ( F ` x ) ) |
|
| 24 | eqidd | |- ( ( ph /\ x e. dom G ) -> ( G ` x ) = ( G ` x ) ) |
|
| 25 | 16 17 19 21 22 23 24 | offval | |- ( ph -> ( F oF - G ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) - ( G ` x ) ) ) ) |
| 26 | inmbl | |- ( ( dom F e. dom vol /\ dom G e. dom vol ) -> ( dom F i^i dom G ) e. dom vol ) |
|
| 27 | 19 21 26 | syl2anc | |- ( ph -> ( dom F i^i dom G ) e. dom vol ) |
| 28 | 12 | negcld | |- ( ( ph /\ x e. ( dom F i^i dom G ) ) -> -u ( G ` x ) e. CC ) |
| 29 | eqidd | |- ( ph -> ( x e. ( dom F i^i dom G ) |-> ( F ` x ) ) = ( x e. ( dom F i^i dom G ) |-> ( F ` x ) ) ) |
|
| 30 | eqidd | |- ( ph -> ( x e. ( dom F i^i dom G ) |-> -u ( G ` x ) ) = ( x e. ( dom F i^i dom G ) |-> -u ( G ` x ) ) ) |
|
| 31 | 27 7 28 29 30 | offval2 | |- ( ph -> ( ( x e. ( dom F i^i dom G ) |-> ( F ` x ) ) oF + ( x e. ( dom F i^i dom G ) |-> -u ( G ` x ) ) ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) + -u ( G ` x ) ) ) ) |
| 32 | 15 25 31 | 3eqtr4d | |- ( ph -> ( F oF - G ) = ( ( x e. ( dom F i^i dom G ) |-> ( F ` x ) ) oF + ( x e. ( dom F i^i dom G ) |-> -u ( G ` x ) ) ) ) |
| 33 | inss1 | |- ( dom F i^i dom G ) C_ dom F |
|
| 34 | resmpt | |- ( ( dom F i^i dom G ) C_ dom F -> ( ( x e. dom F |-> ( F ` x ) ) |` ( dom F i^i dom G ) ) = ( x e. ( dom F i^i dom G ) |-> ( F ` x ) ) ) |
|
| 35 | 33 34 | mp1i | |- ( ph -> ( ( x e. dom F |-> ( F ` x ) ) |` ( dom F i^i dom G ) ) = ( x e. ( dom F i^i dom G ) |-> ( F ` x ) ) ) |
| 36 | 4 | feqmptd | |- ( ph -> F = ( x e. dom F |-> ( F ` x ) ) ) |
| 37 | 36 1 | eqeltrrd | |- ( ph -> ( x e. dom F |-> ( F ` x ) ) e. MblFn ) |
| 38 | mbfres | |- ( ( ( x e. dom F |-> ( F ` x ) ) e. MblFn /\ ( dom F i^i dom G ) e. dom vol ) -> ( ( x e. dom F |-> ( F ` x ) ) |` ( dom F i^i dom G ) ) e. MblFn ) |
|
| 39 | 37 27 38 | syl2anc | |- ( ph -> ( ( x e. dom F |-> ( F ` x ) ) |` ( dom F i^i dom G ) ) e. MblFn ) |
| 40 | 35 39 | eqeltrrd | |- ( ph -> ( x e. ( dom F i^i dom G ) |-> ( F ` x ) ) e. MblFn ) |
| 41 | inss2 | |- ( dom F i^i dom G ) C_ dom G |
|
| 42 | resmpt | |- ( ( dom F i^i dom G ) C_ dom G -> ( ( x e. dom G |-> ( G ` x ) ) |` ( dom F i^i dom G ) ) = ( x e. ( dom F i^i dom G ) |-> ( G ` x ) ) ) |
|
| 43 | 41 42 | mp1i | |- ( ph -> ( ( x e. dom G |-> ( G ` x ) ) |` ( dom F i^i dom G ) ) = ( x e. ( dom F i^i dom G ) |-> ( G ` x ) ) ) |
| 44 | 9 | feqmptd | |- ( ph -> G = ( x e. dom G |-> ( G ` x ) ) ) |
| 45 | 44 2 | eqeltrrd | |- ( ph -> ( x e. dom G |-> ( G ` x ) ) e. MblFn ) |
| 46 | mbfres | |- ( ( ( x e. dom G |-> ( G ` x ) ) e. MblFn /\ ( dom F i^i dom G ) e. dom vol ) -> ( ( x e. dom G |-> ( G ` x ) ) |` ( dom F i^i dom G ) ) e. MblFn ) |
|
| 47 | 45 27 46 | syl2anc | |- ( ph -> ( ( x e. dom G |-> ( G ` x ) ) |` ( dom F i^i dom G ) ) e. MblFn ) |
| 48 | 43 47 | eqeltrrd | |- ( ph -> ( x e. ( dom F i^i dom G ) |-> ( G ` x ) ) e. MblFn ) |
| 49 | 12 48 | mbfneg | |- ( ph -> ( x e. ( dom F i^i dom G ) |-> -u ( G ` x ) ) e. MblFn ) |
| 50 | 40 49 | mbfadd | |- ( ph -> ( ( x e. ( dom F i^i dom G ) |-> ( F ` x ) ) oF + ( x e. ( dom F i^i dom G ) |-> -u ( G ` x ) ) ) e. MblFn ) |
| 51 | 32 50 | eqeltrd | |- ( ph -> ( F oF - G ) e. MblFn ) |