This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two functions are equal almost everywhere, then one is measurable iff the other is. (Contributed by Mario Carneiro, 17-Jun-2014) (Revised by Mario Carneiro, 2-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfeqa.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| mbfeqa.2 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) | ||
| mbfeqa.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 𝐷 ) | ||
| mbfeqa.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) | ||
| mbfeqa.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐷 ∈ ℂ ) | ||
| Assertion | mbfeqa | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ∈ MblFn ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfeqa.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | mbfeqa.2 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) | |
| 3 | mbfeqa.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 𝐷 ) | |
| 4 | mbfeqa.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) | |
| 5 | mbfeqa.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐷 ∈ ℂ ) | |
| 6 | 3 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ℜ ‘ 𝐶 ) = ( ℜ ‘ 𝐷 ) ) |
| 7 | 4 | recld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ℜ ‘ 𝐶 ) ∈ ℝ ) |
| 8 | 5 | recld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ℜ ‘ 𝐷 ) ∈ ℝ ) |
| 9 | 1 2 6 7 8 | mbfeqalem2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ↔ ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐷 ) ) ∈ MblFn ) ) |
| 10 | 3 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ℑ ‘ 𝐶 ) = ( ℑ ‘ 𝐷 ) ) |
| 11 | 4 | imcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ℑ ‘ 𝐶 ) ∈ ℝ ) |
| 12 | 5 | imcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ℑ ‘ 𝐷 ) ∈ ℝ ) |
| 13 | 1 2 10 11 12 | mbfeqalem2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ↔ ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐷 ) ) ∈ MblFn ) ) |
| 14 | 9 13 | anbi12d | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) ↔ ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐷 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐷 ) ) ∈ MblFn ) ) ) |
| 15 | 4 | ismbfcn2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) ) ) |
| 16 | 5 | ismbfcn2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐷 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐷 ) ) ∈ MblFn ) ) ) |
| 17 | 14 15 16 | 3bitr4d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ∈ MblFn ) ) |