This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerousity relation for sets of finitely supported functions. (Contributed by Stefan O'Rear, 9-Jul-2015) (Revised by AV, 7-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapfien2.s | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 0 } | |
| mapfien2.t | ⊢ 𝑇 = { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } | ||
| mapfien2.ac | ⊢ ( 𝜑 → 𝐴 ≈ 𝐶 ) | ||
| mapfien2.bd | ⊢ ( 𝜑 → 𝐵 ≈ 𝐷 ) | ||
| mapfien2.z | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) | ||
| mapfien2.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝐷 ) | ||
| Assertion | mapfien2 | ⊢ ( 𝜑 → 𝑆 ≈ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapfien2.s | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 0 } | |
| 2 | mapfien2.t | ⊢ 𝑇 = { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } | |
| 3 | mapfien2.ac | ⊢ ( 𝜑 → 𝐴 ≈ 𝐶 ) | |
| 4 | mapfien2.bd | ⊢ ( 𝜑 → 𝐵 ≈ 𝐷 ) | |
| 5 | mapfien2.z | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) | |
| 6 | mapfien2.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝐷 ) | |
| 7 | enfixsn | ⊢ ( ( 0 ∈ 𝐵 ∧ 𝑊 ∈ 𝐷 ∧ 𝐵 ≈ 𝐷 ) → ∃ 𝑦 ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ ( 𝑦 ‘ 0 ) = 𝑊 ) ) | |
| 8 | 5 6 4 7 | syl3anc | ⊢ ( 𝜑 → ∃ 𝑦 ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ ( 𝑦 ‘ 0 ) = 𝑊 ) ) |
| 9 | bren | ⊢ ( 𝐴 ≈ 𝐶 ↔ ∃ 𝑧 𝑧 : 𝐴 –1-1-onto→ 𝐶 ) | |
| 10 | 3 9 | sylib | ⊢ ( 𝜑 → ∃ 𝑧 𝑧 : 𝐴 –1-1-onto→ 𝐶 ) |
| 11 | eqid | ⊢ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } = { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } | |
| 12 | eqid | ⊢ ( 𝑦 ‘ 0 ) = ( 𝑦 ‘ 0 ) | |
| 13 | f1ocnv | ⊢ ( 𝑧 : 𝐴 –1-1-onto→ 𝐶 → ◡ 𝑧 : 𝐶 –1-1-onto→ 𝐴 ) | |
| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → ◡ 𝑧 : 𝐶 –1-1-onto→ 𝐴 ) |
| 15 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) | |
| 16 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → 𝐴 ≈ 𝐶 ) |
| 17 | relen | ⊢ Rel ≈ | |
| 18 | 17 | brrelex1i | ⊢ ( 𝐴 ≈ 𝐶 → 𝐴 ∈ V ) |
| 19 | 16 18 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → 𝐴 ∈ V ) |
| 20 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → 𝐵 ≈ 𝐷 ) |
| 21 | 17 | brrelex1i | ⊢ ( 𝐵 ≈ 𝐷 → 𝐵 ∈ V ) |
| 22 | 20 21 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → 𝐵 ∈ V ) |
| 23 | 17 | brrelex2i | ⊢ ( 𝐴 ≈ 𝐶 → 𝐶 ∈ V ) |
| 24 | 16 23 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → 𝐶 ∈ V ) |
| 25 | 17 | brrelex2i | ⊢ ( 𝐵 ≈ 𝐷 → 𝐷 ∈ V ) |
| 26 | 20 25 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → 𝐷 ∈ V ) |
| 27 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → 0 ∈ 𝐵 ) |
| 28 | 1 11 12 14 15 19 22 24 26 27 | mapfien | ⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → ( 𝑤 ∈ 𝑆 ↦ ( 𝑦 ∘ ( 𝑤 ∘ ◡ 𝑧 ) ) ) : 𝑆 –1-1-onto→ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } ) |
| 29 | ovex | ⊢ ( 𝐵 ↑m 𝐴 ) ∈ V | |
| 30 | 1 29 | rabex2 | ⊢ 𝑆 ∈ V |
| 31 | 30 | f1oen | ⊢ ( ( 𝑤 ∈ 𝑆 ↦ ( 𝑦 ∘ ( 𝑤 ∘ ◡ 𝑧 ) ) ) : 𝑆 –1-1-onto→ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } → 𝑆 ≈ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } ) |
| 32 | 28 31 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → 𝑆 ≈ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } ) |
| 33 | 32 | 3adant3r | ⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ ( 𝑦 ‘ 0 ) = 𝑊 ) ) → 𝑆 ≈ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } ) |
| 34 | breq2 | ⊢ ( ( 𝑦 ‘ 0 ) = 𝑊 → ( 𝑥 finSupp ( 𝑦 ‘ 0 ) ↔ 𝑥 finSupp 𝑊 ) ) | |
| 35 | 34 | rabbidv | ⊢ ( ( 𝑦 ‘ 0 ) = 𝑊 → { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } = { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } ) |
| 36 | 35 2 | eqtr4di | ⊢ ( ( 𝑦 ‘ 0 ) = 𝑊 → { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } = 𝑇 ) |
| 37 | 36 | adantl | ⊢ ( ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ ( 𝑦 ‘ 0 ) = 𝑊 ) → { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } = 𝑇 ) |
| 38 | 37 | 3ad2ant3 | ⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ ( 𝑦 ‘ 0 ) = 𝑊 ) ) → { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } = 𝑇 ) |
| 39 | 33 38 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ ( 𝑦 ‘ 0 ) = 𝑊 ) ) → 𝑆 ≈ 𝑇 ) |
| 40 | 39 | 3exp | ⊢ ( 𝜑 → ( 𝑧 : 𝐴 –1-1-onto→ 𝐶 → ( ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ ( 𝑦 ‘ 0 ) = 𝑊 ) → 𝑆 ≈ 𝑇 ) ) ) |
| 41 | 40 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑧 𝑧 : 𝐴 –1-1-onto→ 𝐶 → ( ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ ( 𝑦 ‘ 0 ) = 𝑊 ) → 𝑆 ≈ 𝑇 ) ) ) |
| 42 | 10 41 | mpd | ⊢ ( 𝜑 → ( ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ ( 𝑦 ‘ 0 ) = 𝑊 ) → 𝑆 ≈ 𝑇 ) ) |
| 43 | 42 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑦 ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ ( 𝑦 ‘ 0 ) = 𝑊 ) → 𝑆 ≈ 𝑇 ) ) |
| 44 | 8 43 | mpd | ⊢ ( 𝜑 → 𝑆 ≈ 𝑇 ) |