This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for mapfien . (Contributed by AV, 3-Jul-2019) (Revised by AV, 28-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapfien.s | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } | |
| mapfien.t | ⊢ 𝑇 = { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } | ||
| mapfien.w | ⊢ 𝑊 = ( 𝐺 ‘ 𝑍 ) | ||
| mapfien.f | ⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) | ||
| mapfien.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) | ||
| mapfien.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | ||
| mapfien.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| mapfien.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | ||
| mapfien.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) | ||
| mapfien.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | mapfienlem3 | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapfien.s | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } | |
| 2 | mapfien.t | ⊢ 𝑇 = { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } | |
| 3 | mapfien.w | ⊢ 𝑊 = ( 𝐺 ‘ 𝑍 ) | |
| 4 | mapfien.f | ⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) | |
| 5 | mapfien.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) | |
| 6 | mapfien.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | |
| 7 | mapfien.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 8 | mapfien.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | |
| 9 | mapfien.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) | |
| 10 | mapfien.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 11 | f1ocnv | ⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 ) | |
| 12 | f1of | ⊢ ( ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) | |
| 13 | 5 11 12 | 3syl | ⊢ ( 𝜑 → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) |
| 15 | elrabi | ⊢ ( 𝑔 ∈ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } → 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) ) | |
| 16 | 15 2 | eleq2s | ⊢ ( 𝑔 ∈ 𝑇 → 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) ) |
| 18 | elmapi | ⊢ ( 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) → 𝑔 : 𝐶 ⟶ 𝐷 ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑔 : 𝐶 ⟶ 𝐷 ) |
| 20 | 14 19 | fcod | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ◡ 𝐺 ∘ 𝑔 ) : 𝐶 ⟶ 𝐵 ) |
| 21 | f1ocnv | ⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) | |
| 22 | f1of | ⊢ ( ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐶 → ◡ 𝐹 : 𝐴 ⟶ 𝐶 ) | |
| 23 | 4 21 22 | 3syl | ⊢ ( 𝜑 → ◡ 𝐹 : 𝐴 ⟶ 𝐶 ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ◡ 𝐹 : 𝐴 ⟶ 𝐶 ) |
| 25 | 20 24 | fcod | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) : 𝐴 ⟶ 𝐵 ) |
| 26 | 7 6 | elmapd | ⊢ ( 𝜑 → ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∈ ( 𝐵 ↑m 𝐴 ) ↔ ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) : 𝐴 ⟶ 𝐵 ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∈ ( 𝐵 ↑m 𝐴 ) ↔ ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) : 𝐴 ⟶ 𝐵 ) ) |
| 28 | 25 27 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 29 | 1 2 3 4 5 6 7 8 9 10 | mapfienlem2 | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) finSupp 𝑍 ) |
| 30 | breq1 | ⊢ ( 𝑥 = ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) → ( 𝑥 finSupp 𝑍 ↔ ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) finSupp 𝑍 ) ) | |
| 31 | 30 1 | elrab2 | ⊢ ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∈ 𝑆 ↔ ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∈ ( 𝐵 ↑m 𝐴 ) ∧ ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) finSupp 𝑍 ) ) |
| 32 | 28 29 31 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∈ 𝑆 ) |