This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is dominated by its Cartesian product with a nonempty set. Exercise 6 of Suppes p. 98. (Contributed by NM, 27-Jul-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpdom3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅ ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐵 ) | |
| 2 | xpsneng | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 × { 𝑥 } ) ≈ 𝐴 ) | |
| 3 | 2 | 3adant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 × { 𝑥 } ) ≈ 𝐴 ) |
| 4 | 3 | ensymd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ≈ ( 𝐴 × { 𝑥 } ) ) |
| 5 | xpexg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 × 𝐵 ) ∈ V ) | |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 × 𝐵 ) ∈ V ) |
| 7 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 8 | 7 | snssd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → { 𝑥 } ⊆ 𝐵 ) |
| 9 | xpss2 | ⊢ ( { 𝑥 } ⊆ 𝐵 → ( 𝐴 × { 𝑥 } ) ⊆ ( 𝐴 × 𝐵 ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 × { 𝑥 } ) ⊆ ( 𝐴 × 𝐵 ) ) |
| 11 | ssdomg | ⊢ ( ( 𝐴 × 𝐵 ) ∈ V → ( ( 𝐴 × { 𝑥 } ) ⊆ ( 𝐴 × 𝐵 ) → ( 𝐴 × { 𝑥 } ) ≼ ( 𝐴 × 𝐵 ) ) ) | |
| 12 | 6 10 11 | sylc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 × { 𝑥 } ) ≼ ( 𝐴 × 𝐵 ) ) |
| 13 | endomtr | ⊢ ( ( 𝐴 ≈ ( 𝐴 × { 𝑥 } ) ∧ ( 𝐴 × { 𝑥 } ) ≼ ( 𝐴 × 𝐵 ) ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) | |
| 14 | 4 12 13 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) |
| 15 | 14 | 3expia | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ 𝐵 → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) ) |
| 16 | 15 | exlimdv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 𝑥 ∈ 𝐵 → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) ) |
| 17 | 1 16 | biimtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 ≠ ∅ → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) ) |
| 18 | 17 | 3impia | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅ ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) |