This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of Suppes p. 89. (Contributed by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | map0g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ↑m 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∧ 𝐵 ≠ ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ 𝐴 ) | |
| 2 | fconst6g | ⊢ ( 𝑓 ∈ 𝐴 → ( 𝐵 × { 𝑓 } ) : 𝐵 ⟶ 𝐴 ) | |
| 3 | elmapg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐵 × { 𝑓 } ) ∈ ( 𝐴 ↑m 𝐵 ) ↔ ( 𝐵 × { 𝑓 } ) : 𝐵 ⟶ 𝐴 ) ) | |
| 4 | 2 3 | imbitrrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑓 ∈ 𝐴 → ( 𝐵 × { 𝑓 } ) ∈ ( 𝐴 ↑m 𝐵 ) ) ) |
| 5 | ne0i | ⊢ ( ( 𝐵 × { 𝑓 } ) ∈ ( 𝐴 ↑m 𝐵 ) → ( 𝐴 ↑m 𝐵 ) ≠ ∅ ) | |
| 6 | 4 5 | syl6 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑓 ∈ 𝐴 → ( 𝐴 ↑m 𝐵 ) ≠ ∅ ) ) |
| 7 | 6 | exlimdv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑓 𝑓 ∈ 𝐴 → ( 𝐴 ↑m 𝐵 ) ≠ ∅ ) ) |
| 8 | 1 7 | biimtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≠ ∅ → ( 𝐴 ↑m 𝐵 ) ≠ ∅ ) ) |
| 9 | 8 | necon4d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ↑m 𝐵 ) = ∅ → 𝐴 = ∅ ) ) |
| 10 | f0 | ⊢ ∅ : ∅ ⟶ 𝐴 | |
| 11 | feq2 | ⊢ ( 𝐵 = ∅ → ( ∅ : 𝐵 ⟶ 𝐴 ↔ ∅ : ∅ ⟶ 𝐴 ) ) | |
| 12 | 10 11 | mpbiri | ⊢ ( 𝐵 = ∅ → ∅ : 𝐵 ⟶ 𝐴 ) |
| 13 | elmapg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∅ ∈ ( 𝐴 ↑m 𝐵 ) ↔ ∅ : 𝐵 ⟶ 𝐴 ) ) | |
| 14 | 12 13 | imbitrrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 = ∅ → ∅ ∈ ( 𝐴 ↑m 𝐵 ) ) ) |
| 15 | ne0i | ⊢ ( ∅ ∈ ( 𝐴 ↑m 𝐵 ) → ( 𝐴 ↑m 𝐵 ) ≠ ∅ ) | |
| 16 | 14 15 | syl6 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 = ∅ → ( 𝐴 ↑m 𝐵 ) ≠ ∅ ) ) |
| 17 | 16 | necon2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ↑m 𝐵 ) = ∅ → 𝐵 ≠ ∅ ) ) |
| 18 | 9 17 | jcad | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ↑m 𝐵 ) = ∅ → ( 𝐴 = ∅ ∧ 𝐵 ≠ ∅ ) ) ) |
| 19 | oveq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ↑m 𝐵 ) = ( ∅ ↑m 𝐵 ) ) | |
| 20 | map0b | ⊢ ( 𝐵 ≠ ∅ → ( ∅ ↑m 𝐵 ) = ∅ ) | |
| 21 | 19 20 | sylan9eq | ⊢ ( ( 𝐴 = ∅ ∧ 𝐵 ≠ ∅ ) → ( 𝐴 ↑m 𝐵 ) = ∅ ) |
| 22 | 18 21 | impbid1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ↑m 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∧ 𝐵 ≠ ∅ ) ) ) |