This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of exponents law for cardinal arithmetic. Theorem 6I(4) of Enderton p. 142. (Contributed by NM, 27-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapdjuen | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A ^m ( B |_| C ) ) ~~ ( ( A ^m B ) X. ( A ^m C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju | |- ( B |_| C ) = ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) |
|
| 2 | 1 | oveq2i | |- ( A ^m ( B |_| C ) ) = ( A ^m ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) ) |
| 3 | snex | |- { (/) } e. _V |
|
| 4 | simp2 | |- ( ( A e. V /\ B e. W /\ C e. X ) -> B e. W ) |
|
| 5 | xpexg | |- ( ( { (/) } e. _V /\ B e. W ) -> ( { (/) } X. B ) e. _V ) |
|
| 6 | 3 4 5 | sylancr | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { (/) } X. B ) e. _V ) |
| 7 | snex | |- { 1o } e. _V |
|
| 8 | simp3 | |- ( ( A e. V /\ B e. W /\ C e. X ) -> C e. X ) |
|
| 9 | xpexg | |- ( ( { 1o } e. _V /\ C e. X ) -> ( { 1o } X. C ) e. _V ) |
|
| 10 | 7 8 9 | sylancr | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. C ) e. _V ) |
| 11 | simp1 | |- ( ( A e. V /\ B e. W /\ C e. X ) -> A e. V ) |
|
| 12 | xp01disjl | |- ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) = (/) |
|
| 13 | 12 | a1i | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) = (/) ) |
| 14 | mapunen | |- ( ( ( ( { (/) } X. B ) e. _V /\ ( { 1o } X. C ) e. _V /\ A e. V ) /\ ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) = (/) ) -> ( A ^m ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) ) ~~ ( ( A ^m ( { (/) } X. B ) ) X. ( A ^m ( { 1o } X. C ) ) ) ) |
|
| 15 | 6 10 11 13 14 | syl31anc | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A ^m ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) ) ~~ ( ( A ^m ( { (/) } X. B ) ) X. ( A ^m ( { 1o } X. C ) ) ) ) |
| 16 | 2 15 | eqbrtrid | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A ^m ( B |_| C ) ) ~~ ( ( A ^m ( { (/) } X. B ) ) X. ( A ^m ( { 1o } X. C ) ) ) ) |
| 17 | enrefg | |- ( A e. V -> A ~~ A ) |
|
| 18 | 11 17 | syl | |- ( ( A e. V /\ B e. W /\ C e. X ) -> A ~~ A ) |
| 19 | 0ex | |- (/) e. _V |
|
| 20 | xpsnen2g | |- ( ( (/) e. _V /\ B e. W ) -> ( { (/) } X. B ) ~~ B ) |
|
| 21 | 19 4 20 | sylancr | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { (/) } X. B ) ~~ B ) |
| 22 | mapen | |- ( ( A ~~ A /\ ( { (/) } X. B ) ~~ B ) -> ( A ^m ( { (/) } X. B ) ) ~~ ( A ^m B ) ) |
|
| 23 | 18 21 22 | syl2anc | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A ^m ( { (/) } X. B ) ) ~~ ( A ^m B ) ) |
| 24 | 1on | |- 1o e. On |
|
| 25 | xpsnen2g | |- ( ( 1o e. On /\ C e. X ) -> ( { 1o } X. C ) ~~ C ) |
|
| 26 | 24 8 25 | sylancr | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. C ) ~~ C ) |
| 27 | mapen | |- ( ( A ~~ A /\ ( { 1o } X. C ) ~~ C ) -> ( A ^m ( { 1o } X. C ) ) ~~ ( A ^m C ) ) |
|
| 28 | 18 26 27 | syl2anc | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A ^m ( { 1o } X. C ) ) ~~ ( A ^m C ) ) |
| 29 | xpen | |- ( ( ( A ^m ( { (/) } X. B ) ) ~~ ( A ^m B ) /\ ( A ^m ( { 1o } X. C ) ) ~~ ( A ^m C ) ) -> ( ( A ^m ( { (/) } X. B ) ) X. ( A ^m ( { 1o } X. C ) ) ) ~~ ( ( A ^m B ) X. ( A ^m C ) ) ) |
|
| 30 | 23 28 29 | syl2anc | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( A ^m ( { (/) } X. B ) ) X. ( A ^m ( { 1o } X. C ) ) ) ~~ ( ( A ^m B ) X. ( A ^m C ) ) ) |
| 31 | entr | |- ( ( ( A ^m ( B |_| C ) ) ~~ ( ( A ^m ( { (/) } X. B ) ) X. ( A ^m ( { 1o } X. C ) ) ) /\ ( ( A ^m ( { (/) } X. B ) ) X. ( A ^m ( { 1o } X. C ) ) ) ~~ ( ( A ^m B ) X. ( A ^m C ) ) ) -> ( A ^m ( B |_| C ) ) ~~ ( ( A ^m B ) X. ( A ^m C ) ) ) |
|
| 32 | 16 30 31 | syl2anc | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A ^m ( B |_| C ) ) ~~ ( ( A ^m B ) X. ( A ^m C ) ) ) |