This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | m1exp1 | ⊢ ( 𝑁 ∈ ℤ → ( ( - 1 ↑ 𝑁 ) = 1 ↔ 2 ∥ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z | ⊢ 2 ∈ ℤ | |
| 2 | divides | ⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 2 ) = 𝑁 ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝑁 ∈ ℤ → ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 2 ) = 𝑁 ) ) |
| 4 | oveq2 | ⊢ ( 𝑁 = ( 𝑛 · 2 ) → ( - 1 ↑ 𝑁 ) = ( - 1 ↑ ( 𝑛 · 2 ) ) ) | |
| 5 | 4 | eqcoms | ⊢ ( ( 𝑛 · 2 ) = 𝑁 → ( - 1 ↑ 𝑁 ) = ( - 1 ↑ ( 𝑛 · 2 ) ) ) |
| 6 | zcn | ⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) | |
| 7 | 2cnd | ⊢ ( 𝑛 ∈ ℤ → 2 ∈ ℂ ) | |
| 8 | 6 7 | mulcomd | ⊢ ( 𝑛 ∈ ℤ → ( 𝑛 · 2 ) = ( 2 · 𝑛 ) ) |
| 9 | 8 | oveq2d | ⊢ ( 𝑛 ∈ ℤ → ( - 1 ↑ ( 𝑛 · 2 ) ) = ( - 1 ↑ ( 2 · 𝑛 ) ) ) |
| 10 | m1expeven | ⊢ ( 𝑛 ∈ ℤ → ( - 1 ↑ ( 2 · 𝑛 ) ) = 1 ) | |
| 11 | 9 10 | eqtrd | ⊢ ( 𝑛 ∈ ℤ → ( - 1 ↑ ( 𝑛 · 2 ) ) = 1 ) |
| 12 | 5 11 | sylan9eqr | ⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 · 2 ) = 𝑁 ) → ( - 1 ↑ 𝑁 ) = 1 ) |
| 13 | 12 | rexlimiva | ⊢ ( ∃ 𝑛 ∈ ℤ ( 𝑛 · 2 ) = 𝑁 → ( - 1 ↑ 𝑁 ) = 1 ) |
| 14 | 3 13 | biimtrdi | ⊢ ( 𝑁 ∈ ℤ → ( 2 ∥ 𝑁 → ( - 1 ↑ 𝑁 ) = 1 ) ) |
| 15 | 14 | impcom | ⊢ ( ( 2 ∥ 𝑁 ∧ 𝑁 ∈ ℤ ) → ( - 1 ↑ 𝑁 ) = 1 ) |
| 16 | simpl | ⊢ ( ( 2 ∥ 𝑁 ∧ 𝑁 ∈ ℤ ) → 2 ∥ 𝑁 ) | |
| 17 | 15 16 | 2thd | ⊢ ( ( 2 ∥ 𝑁 ∧ 𝑁 ∈ ℤ ) → ( ( - 1 ↑ 𝑁 ) = 1 ↔ 2 ∥ 𝑁 ) ) |
| 18 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 19 | eqcom | ⊢ ( - 1 = 1 ↔ 1 = - 1 ) | |
| 20 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 21 | 20 | eqnegi | ⊢ ( 1 = - 1 ↔ 1 = 0 ) |
| 22 | 19 21 | bitri | ⊢ ( - 1 = 1 ↔ 1 = 0 ) |
| 23 | 18 22 | nemtbir | ⊢ ¬ - 1 = 1 |
| 24 | odd2np1 | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) | |
| 25 | oveq2 | ⊢ ( 𝑁 = ( ( 2 · 𝑛 ) + 1 ) → ( - 1 ↑ 𝑁 ) = ( - 1 ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) | |
| 26 | 25 | eqcoms | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( - 1 ↑ 𝑁 ) = ( - 1 ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 27 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 28 | 27 | a1i | ⊢ ( 𝑛 ∈ ℤ → - 1 ∈ ℂ ) |
| 29 | neg1ne0 | ⊢ - 1 ≠ 0 | |
| 30 | 29 | a1i | ⊢ ( 𝑛 ∈ ℤ → - 1 ≠ 0 ) |
| 31 | 1 | a1i | ⊢ ( 𝑛 ∈ ℤ → 2 ∈ ℤ ) |
| 32 | id | ⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℤ ) | |
| 33 | 31 32 | zmulcld | ⊢ ( 𝑛 ∈ ℤ → ( 2 · 𝑛 ) ∈ ℤ ) |
| 34 | 28 30 33 | expp1zd | ⊢ ( 𝑛 ∈ ℤ → ( - 1 ↑ ( ( 2 · 𝑛 ) + 1 ) ) = ( ( - 1 ↑ ( 2 · 𝑛 ) ) · - 1 ) ) |
| 35 | 10 | oveq1d | ⊢ ( 𝑛 ∈ ℤ → ( ( - 1 ↑ ( 2 · 𝑛 ) ) · - 1 ) = ( 1 · - 1 ) ) |
| 36 | 27 | mullidi | ⊢ ( 1 · - 1 ) = - 1 |
| 37 | 35 36 | eqtrdi | ⊢ ( 𝑛 ∈ ℤ → ( ( - 1 ↑ ( 2 · 𝑛 ) ) · - 1 ) = - 1 ) |
| 38 | 34 37 | eqtrd | ⊢ ( 𝑛 ∈ ℤ → ( - 1 ↑ ( ( 2 · 𝑛 ) + 1 ) ) = - 1 ) |
| 39 | 26 38 | sylan9eqr | ⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) → ( - 1 ↑ 𝑁 ) = - 1 ) |
| 40 | 39 | rexlimiva | ⊢ ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( - 1 ↑ 𝑁 ) = - 1 ) |
| 41 | 24 40 | biimtrdi | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 → ( - 1 ↑ 𝑁 ) = - 1 ) ) |
| 42 | 41 | impcom | ⊢ ( ( ¬ 2 ∥ 𝑁 ∧ 𝑁 ∈ ℤ ) → ( - 1 ↑ 𝑁 ) = - 1 ) |
| 43 | 42 | eqeq1d | ⊢ ( ( ¬ 2 ∥ 𝑁 ∧ 𝑁 ∈ ℤ ) → ( ( - 1 ↑ 𝑁 ) = 1 ↔ - 1 = 1 ) ) |
| 44 | 23 43 | mtbiri | ⊢ ( ( ¬ 2 ∥ 𝑁 ∧ 𝑁 ∈ ℤ ) → ¬ ( - 1 ↑ 𝑁 ) = 1 ) |
| 45 | simpl | ⊢ ( ( ¬ 2 ∥ 𝑁 ∧ 𝑁 ∈ ℤ ) → ¬ 2 ∥ 𝑁 ) | |
| 46 | 44 45 | 2falsed | ⊢ ( ( ¬ 2 ∥ 𝑁 ∧ 𝑁 ∈ ℤ ) → ( ( - 1 ↑ 𝑁 ) = 1 ↔ 2 ∥ 𝑁 ) ) |
| 47 | 17 46 | pm2.61ian | ⊢ ( 𝑁 ∈ ℤ → ( ( - 1 ↑ 𝑁 ) = 1 ↔ 2 ∥ 𝑁 ) ) |