This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | m1exp1 | |- ( N e. ZZ -> ( ( -u 1 ^ N ) = 1 <-> 2 || N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z | |- 2 e. ZZ |
|
| 2 | divides | |- ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 || N <-> E. n e. ZZ ( n x. 2 ) = N ) ) |
|
| 3 | 1 2 | mpan | |- ( N e. ZZ -> ( 2 || N <-> E. n e. ZZ ( n x. 2 ) = N ) ) |
| 4 | oveq2 | |- ( N = ( n x. 2 ) -> ( -u 1 ^ N ) = ( -u 1 ^ ( n x. 2 ) ) ) |
|
| 5 | 4 | eqcoms | |- ( ( n x. 2 ) = N -> ( -u 1 ^ N ) = ( -u 1 ^ ( n x. 2 ) ) ) |
| 6 | zcn | |- ( n e. ZZ -> n e. CC ) |
|
| 7 | 2cnd | |- ( n e. ZZ -> 2 e. CC ) |
|
| 8 | 6 7 | mulcomd | |- ( n e. ZZ -> ( n x. 2 ) = ( 2 x. n ) ) |
| 9 | 8 | oveq2d | |- ( n e. ZZ -> ( -u 1 ^ ( n x. 2 ) ) = ( -u 1 ^ ( 2 x. n ) ) ) |
| 10 | m1expeven | |- ( n e. ZZ -> ( -u 1 ^ ( 2 x. n ) ) = 1 ) |
|
| 11 | 9 10 | eqtrd | |- ( n e. ZZ -> ( -u 1 ^ ( n x. 2 ) ) = 1 ) |
| 12 | 5 11 | sylan9eqr | |- ( ( n e. ZZ /\ ( n x. 2 ) = N ) -> ( -u 1 ^ N ) = 1 ) |
| 13 | 12 | rexlimiva | |- ( E. n e. ZZ ( n x. 2 ) = N -> ( -u 1 ^ N ) = 1 ) |
| 14 | 3 13 | biimtrdi | |- ( N e. ZZ -> ( 2 || N -> ( -u 1 ^ N ) = 1 ) ) |
| 15 | 14 | impcom | |- ( ( 2 || N /\ N e. ZZ ) -> ( -u 1 ^ N ) = 1 ) |
| 16 | simpl | |- ( ( 2 || N /\ N e. ZZ ) -> 2 || N ) |
|
| 17 | 15 16 | 2thd | |- ( ( 2 || N /\ N e. ZZ ) -> ( ( -u 1 ^ N ) = 1 <-> 2 || N ) ) |
| 18 | ax-1ne0 | |- 1 =/= 0 |
|
| 19 | eqcom | |- ( -u 1 = 1 <-> 1 = -u 1 ) |
|
| 20 | ax-1cn | |- 1 e. CC |
|
| 21 | 20 | eqnegi | |- ( 1 = -u 1 <-> 1 = 0 ) |
| 22 | 19 21 | bitri | |- ( -u 1 = 1 <-> 1 = 0 ) |
| 23 | 18 22 | nemtbir | |- -. -u 1 = 1 |
| 24 | odd2np1 | |- ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
|
| 25 | oveq2 | |- ( N = ( ( 2 x. n ) + 1 ) -> ( -u 1 ^ N ) = ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) ) |
|
| 26 | 25 | eqcoms | |- ( ( ( 2 x. n ) + 1 ) = N -> ( -u 1 ^ N ) = ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) ) |
| 27 | neg1cn | |- -u 1 e. CC |
|
| 28 | 27 | a1i | |- ( n e. ZZ -> -u 1 e. CC ) |
| 29 | neg1ne0 | |- -u 1 =/= 0 |
|
| 30 | 29 | a1i | |- ( n e. ZZ -> -u 1 =/= 0 ) |
| 31 | 1 | a1i | |- ( n e. ZZ -> 2 e. ZZ ) |
| 32 | id | |- ( n e. ZZ -> n e. ZZ ) |
|
| 33 | 31 32 | zmulcld | |- ( n e. ZZ -> ( 2 x. n ) e. ZZ ) |
| 34 | 28 30 33 | expp1zd | |- ( n e. ZZ -> ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) = ( ( -u 1 ^ ( 2 x. n ) ) x. -u 1 ) ) |
| 35 | 10 | oveq1d | |- ( n e. ZZ -> ( ( -u 1 ^ ( 2 x. n ) ) x. -u 1 ) = ( 1 x. -u 1 ) ) |
| 36 | 27 | mullidi | |- ( 1 x. -u 1 ) = -u 1 |
| 37 | 35 36 | eqtrdi | |- ( n e. ZZ -> ( ( -u 1 ^ ( 2 x. n ) ) x. -u 1 ) = -u 1 ) |
| 38 | 34 37 | eqtrd | |- ( n e. ZZ -> ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) = -u 1 ) |
| 39 | 26 38 | sylan9eqr | |- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) -> ( -u 1 ^ N ) = -u 1 ) |
| 40 | 39 | rexlimiva | |- ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N -> ( -u 1 ^ N ) = -u 1 ) |
| 41 | 24 40 | biimtrdi | |- ( N e. ZZ -> ( -. 2 || N -> ( -u 1 ^ N ) = -u 1 ) ) |
| 42 | 41 | impcom | |- ( ( -. 2 || N /\ N e. ZZ ) -> ( -u 1 ^ N ) = -u 1 ) |
| 43 | 42 | eqeq1d | |- ( ( -. 2 || N /\ N e. ZZ ) -> ( ( -u 1 ^ N ) = 1 <-> -u 1 = 1 ) ) |
| 44 | 23 43 | mtbiri | |- ( ( -. 2 || N /\ N e. ZZ ) -> -. ( -u 1 ^ N ) = 1 ) |
| 45 | simpl | |- ( ( -. 2 || N /\ N e. ZZ ) -> -. 2 || N ) |
|
| 46 | 44 45 | 2falsed | |- ( ( -. 2 || N /\ N e. ZZ ) -> ( ( -u 1 ^ N ) = 1 <-> 2 || N ) ) |
| 47 | 17 46 | pm2.61ian | |- ( N e. ZZ -> ( ( -u 1 ^ N ) = 1 <-> 2 || N ) ) |