This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0enne | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 2 ) ∈ ℕ0 ↔ ( 𝑁 / 2 ) ∈ ℕ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | ⊢ ( ( 𝑁 / 2 ) ∈ ℕ0 ↔ ( ( 𝑁 / 2 ) ∈ ℕ ∨ ( 𝑁 / 2 ) = 0 ) ) | |
| 2 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 3 | 2cnd | ⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℂ ) | |
| 4 | 2ne0 | ⊢ 2 ≠ 0 | |
| 5 | 4 | a1i | ⊢ ( 𝑁 ∈ ℕ → 2 ≠ 0 ) |
| 6 | 2 3 5 | diveq0ad | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 2 ) = 0 ↔ 𝑁 = 0 ) ) |
| 7 | eleq1 | ⊢ ( 𝑁 = 0 → ( 𝑁 ∈ ℕ ↔ 0 ∈ ℕ ) ) | |
| 8 | 0nnn | ⊢ ¬ 0 ∈ ℕ | |
| 9 | 8 | pm2.21i | ⊢ ( 0 ∈ ℕ → ( 𝑁 / 2 ) ∈ ℕ ) |
| 10 | 7 9 | biimtrdi | ⊢ ( 𝑁 = 0 → ( 𝑁 ∈ ℕ → ( 𝑁 / 2 ) ∈ ℕ ) ) |
| 11 | 10 | com12 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 = 0 → ( 𝑁 / 2 ) ∈ ℕ ) ) |
| 12 | 6 11 | sylbid | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 2 ) = 0 → ( 𝑁 / 2 ) ∈ ℕ ) ) |
| 13 | 12 | com12 | ⊢ ( ( 𝑁 / 2 ) = 0 → ( 𝑁 ∈ ℕ → ( 𝑁 / 2 ) ∈ ℕ ) ) |
| 14 | 13 | jao1i | ⊢ ( ( ( 𝑁 / 2 ) ∈ ℕ ∨ ( 𝑁 / 2 ) = 0 ) → ( 𝑁 ∈ ℕ → ( 𝑁 / 2 ) ∈ ℕ ) ) |
| 15 | 1 14 | sylbi | ⊢ ( ( 𝑁 / 2 ) ∈ ℕ0 → ( 𝑁 ∈ ℕ → ( 𝑁 / 2 ) ∈ ℕ ) ) |
| 16 | 15 | com12 | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 2 ) ∈ ℕ0 → ( 𝑁 / 2 ) ∈ ℕ ) ) |
| 17 | nnnn0 | ⊢ ( ( 𝑁 / 2 ) ∈ ℕ → ( 𝑁 / 2 ) ∈ ℕ0 ) | |
| 18 | 16 17 | impbid1 | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 2 ) ∈ ℕ0 ↔ ( 𝑁 / 2 ) ∈ ℕ ) ) |