This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for scalar multiplication. ( hvmulcan analog.) (Contributed by NM, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lvecmulcan.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lvecmulcan.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lvecmulcan.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lvecmulcan.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lvecmulcan.o | ⊢ 0 = ( 0g ‘ 𝐹 ) | ||
| lvecmulcan.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lvecmulcan.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | ||
| lvecmulcan.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lvecmulcan.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lvecmulcan.n | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
| Assertion | lvecvscan | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) = ( 𝐴 · 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecmulcan.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lvecmulcan.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | lvecmulcan.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | lvecmulcan.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | lvecmulcan.o | ⊢ 0 = ( 0g ‘ 𝐹 ) | |
| 6 | lvecmulcan.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 7 | lvecmulcan.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | |
| 8 | lvecmulcan.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 9 | lvecmulcan.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 10 | lvecmulcan.n | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
| 11 | df-ne | ⊢ ( 𝐴 ≠ 0 ↔ ¬ 𝐴 = 0 ) | |
| 12 | biorf | ⊢ ( ¬ 𝐴 = 0 → ( ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ↔ ( 𝐴 = 0 ∨ ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ) ) ) | |
| 13 | 11 12 | sylbi | ⊢ ( 𝐴 ≠ 0 → ( ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ↔ ( 𝐴 = 0 ∨ ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ) ) ) |
| 14 | 10 13 | syl | ⊢ ( 𝜑 → ( ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ↔ ( 𝐴 = 0 ∨ ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ) ) ) |
| 15 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 16 | 6 15 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 17 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 18 | eqid | ⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) | |
| 19 | 1 17 18 | lmodsubeq0 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ↔ 𝑋 = 𝑌 ) ) |
| 20 | 16 8 9 19 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ↔ 𝑋 = 𝑌 ) ) |
| 21 | 1 2 3 4 18 16 7 8 9 | lmodsubdi | ⊢ ( 𝜑 → ( 𝐴 · ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) ) = ( ( 𝐴 · 𝑋 ) ( -g ‘ 𝑊 ) ( 𝐴 · 𝑌 ) ) ) |
| 22 | 21 | eqeq1d | ⊢ ( 𝜑 → ( ( 𝐴 · ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) ) = ( 0g ‘ 𝑊 ) ↔ ( ( 𝐴 · 𝑋 ) ( -g ‘ 𝑊 ) ( 𝐴 · 𝑌 ) ) = ( 0g ‘ 𝑊 ) ) ) |
| 23 | 1 18 | lmodvsubcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
| 24 | 16 8 9 23 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
| 25 | 1 2 3 4 5 17 6 7 24 | lvecvs0or | ⊢ ( 𝜑 → ( ( 𝐴 · ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) ) = ( 0g ‘ 𝑊 ) ↔ ( 𝐴 = 0 ∨ ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ) ) ) |
| 26 | 1 3 2 4 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 27 | 16 7 8 26 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 28 | 1 3 2 4 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐴 · 𝑌 ) ∈ 𝑉 ) |
| 29 | 16 7 9 28 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 · 𝑌 ) ∈ 𝑉 ) |
| 30 | 1 17 18 | lmodsubeq0 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 · 𝑋 ) ∈ 𝑉 ∧ ( 𝐴 · 𝑌 ) ∈ 𝑉 ) → ( ( ( 𝐴 · 𝑋 ) ( -g ‘ 𝑊 ) ( 𝐴 · 𝑌 ) ) = ( 0g ‘ 𝑊 ) ↔ ( 𝐴 · 𝑋 ) = ( 𝐴 · 𝑌 ) ) ) |
| 31 | 16 27 29 30 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) ( -g ‘ 𝑊 ) ( 𝐴 · 𝑌 ) ) = ( 0g ‘ 𝑊 ) ↔ ( 𝐴 · 𝑋 ) = ( 𝐴 · 𝑌 ) ) ) |
| 32 | 22 25 31 | 3bitr3d | ⊢ ( 𝜑 → ( ( 𝐴 = 0 ∨ ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ) ↔ ( 𝐴 · 𝑋 ) = ( 𝐴 · 𝑌 ) ) ) |
| 33 | 14 20 32 | 3bitr3rd | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) = ( 𝐴 · 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |