This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvmulcan | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) = ( 𝐴 ·ℎ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne | ⊢ ( 𝐴 ≠ 0 ↔ ¬ 𝐴 = 0 ) | |
| 2 | biorf | ⊢ ( ¬ 𝐴 = 0 → ( ( 𝐵 −ℎ 𝐶 ) = 0ℎ ↔ ( 𝐴 = 0 ∨ ( 𝐵 −ℎ 𝐶 ) = 0ℎ ) ) ) | |
| 3 | 1 2 | sylbi | ⊢ ( 𝐴 ≠ 0 → ( ( 𝐵 −ℎ 𝐶 ) = 0ℎ ↔ ( 𝐴 = 0 ∨ ( 𝐵 −ℎ 𝐶 ) = 0ℎ ) ) ) |
| 4 | 3 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℋ ) → ( ( 𝐵 −ℎ 𝐶 ) = 0ℎ ↔ ( 𝐴 = 0 ∨ ( 𝐵 −ℎ 𝐶 ) = 0ℎ ) ) ) |
| 5 | 4 | 3adant3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐵 −ℎ 𝐶 ) = 0ℎ ↔ ( 𝐴 = 0 ∨ ( 𝐵 −ℎ 𝐶 ) = 0ℎ ) ) ) |
| 6 | hvsubeq0 | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐵 −ℎ 𝐶 ) = 0ℎ ↔ 𝐵 = 𝐶 ) ) | |
| 7 | 6 | 3adant1 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐵 −ℎ 𝐶 ) = 0ℎ ↔ 𝐵 = 𝐶 ) ) |
| 8 | hvsubdistr1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐵 ) −ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) | |
| 9 | 8 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) = 0ℎ ↔ ( ( 𝐴 ·ℎ 𝐵 ) −ℎ ( 𝐴 ·ℎ 𝐶 ) ) = 0ℎ ) ) |
| 10 | hvsubcl | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 −ℎ 𝐶 ) ∈ ℋ ) | |
| 11 | hvmul0or | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 −ℎ 𝐶 ) ∈ ℋ ) → ( ( 𝐴 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) = 0ℎ ↔ ( 𝐴 = 0 ∨ ( 𝐵 −ℎ 𝐶 ) = 0ℎ ) ) ) | |
| 12 | 10 11 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( ( 𝐴 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) = 0ℎ ↔ ( 𝐴 = 0 ∨ ( 𝐵 −ℎ 𝐶 ) = 0ℎ ) ) ) |
| 13 | 12 | 3impb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) = 0ℎ ↔ ( 𝐴 = 0 ∨ ( 𝐵 −ℎ 𝐶 ) = 0ℎ ) ) ) |
| 14 | hvmulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ) | |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ) |
| 16 | hvmulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) | |
| 17 | 16 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) |
| 18 | hvsubeq0 | ⊢ ( ( ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ∧ ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) → ( ( ( 𝐴 ·ℎ 𝐵 ) −ℎ ( 𝐴 ·ℎ 𝐶 ) ) = 0ℎ ↔ ( 𝐴 ·ℎ 𝐵 ) = ( 𝐴 ·ℎ 𝐶 ) ) ) | |
| 19 | 15 17 18 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( ( 𝐴 ·ℎ 𝐵 ) −ℎ ( 𝐴 ·ℎ 𝐶 ) ) = 0ℎ ↔ ( 𝐴 ·ℎ 𝐵 ) = ( 𝐴 ·ℎ 𝐶 ) ) ) |
| 20 | 9 13 19 | 3bitr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 = 0 ∨ ( 𝐵 −ℎ 𝐶 ) = 0ℎ ) ↔ ( 𝐴 ·ℎ 𝐵 ) = ( 𝐴 ·ℎ 𝐶 ) ) ) |
| 21 | 20 | 3adant1r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 = 0 ∨ ( 𝐵 −ℎ 𝐶 ) = 0ℎ ) ↔ ( 𝐴 ·ℎ 𝐵 ) = ( 𝐴 ·ℎ 𝐶 ) ) ) |
| 22 | 5 7 21 | 3bitr3rd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) = ( 𝐴 ·ℎ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |