This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for scalar multiplication. ( hvmulcan analog.) (Contributed by NM, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lvecmulcan.v | |- V = ( Base ` W ) |
|
| lvecmulcan.s | |- .x. = ( .s ` W ) |
||
| lvecmulcan.f | |- F = ( Scalar ` W ) |
||
| lvecmulcan.k | |- K = ( Base ` F ) |
||
| lvecmulcan.o | |- .0. = ( 0g ` F ) |
||
| lvecmulcan.w | |- ( ph -> W e. LVec ) |
||
| lvecmulcan.a | |- ( ph -> A e. K ) |
||
| lvecmulcan.x | |- ( ph -> X e. V ) |
||
| lvecmulcan.y | |- ( ph -> Y e. V ) |
||
| lvecmulcan.n | |- ( ph -> A =/= .0. ) |
||
| Assertion | lvecvscan | |- ( ph -> ( ( A .x. X ) = ( A .x. Y ) <-> X = Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecmulcan.v | |- V = ( Base ` W ) |
|
| 2 | lvecmulcan.s | |- .x. = ( .s ` W ) |
|
| 3 | lvecmulcan.f | |- F = ( Scalar ` W ) |
|
| 4 | lvecmulcan.k | |- K = ( Base ` F ) |
|
| 5 | lvecmulcan.o | |- .0. = ( 0g ` F ) |
|
| 6 | lvecmulcan.w | |- ( ph -> W e. LVec ) |
|
| 7 | lvecmulcan.a | |- ( ph -> A e. K ) |
|
| 8 | lvecmulcan.x | |- ( ph -> X e. V ) |
|
| 9 | lvecmulcan.y | |- ( ph -> Y e. V ) |
|
| 10 | lvecmulcan.n | |- ( ph -> A =/= .0. ) |
|
| 11 | df-ne | |- ( A =/= .0. <-> -. A = .0. ) |
|
| 12 | biorf | |- ( -. A = .0. -> ( ( X ( -g ` W ) Y ) = ( 0g ` W ) <-> ( A = .0. \/ ( X ( -g ` W ) Y ) = ( 0g ` W ) ) ) ) |
|
| 13 | 11 12 | sylbi | |- ( A =/= .0. -> ( ( X ( -g ` W ) Y ) = ( 0g ` W ) <-> ( A = .0. \/ ( X ( -g ` W ) Y ) = ( 0g ` W ) ) ) ) |
| 14 | 10 13 | syl | |- ( ph -> ( ( X ( -g ` W ) Y ) = ( 0g ` W ) <-> ( A = .0. \/ ( X ( -g ` W ) Y ) = ( 0g ` W ) ) ) ) |
| 15 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 16 | 6 15 | syl | |- ( ph -> W e. LMod ) |
| 17 | eqid | |- ( 0g ` W ) = ( 0g ` W ) |
|
| 18 | eqid | |- ( -g ` W ) = ( -g ` W ) |
|
| 19 | 1 17 18 | lmodsubeq0 | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( ( X ( -g ` W ) Y ) = ( 0g ` W ) <-> X = Y ) ) |
| 20 | 16 8 9 19 | syl3anc | |- ( ph -> ( ( X ( -g ` W ) Y ) = ( 0g ` W ) <-> X = Y ) ) |
| 21 | 1 2 3 4 18 16 7 8 9 | lmodsubdi | |- ( ph -> ( A .x. ( X ( -g ` W ) Y ) ) = ( ( A .x. X ) ( -g ` W ) ( A .x. Y ) ) ) |
| 22 | 21 | eqeq1d | |- ( ph -> ( ( A .x. ( X ( -g ` W ) Y ) ) = ( 0g ` W ) <-> ( ( A .x. X ) ( -g ` W ) ( A .x. Y ) ) = ( 0g ` W ) ) ) |
| 23 | 1 18 | lmodvsubcl | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( X ( -g ` W ) Y ) e. V ) |
| 24 | 16 8 9 23 | syl3anc | |- ( ph -> ( X ( -g ` W ) Y ) e. V ) |
| 25 | 1 2 3 4 5 17 6 7 24 | lvecvs0or | |- ( ph -> ( ( A .x. ( X ( -g ` W ) Y ) ) = ( 0g ` W ) <-> ( A = .0. \/ ( X ( -g ` W ) Y ) = ( 0g ` W ) ) ) ) |
| 26 | 1 3 2 4 | lmodvscl | |- ( ( W e. LMod /\ A e. K /\ X e. V ) -> ( A .x. X ) e. V ) |
| 27 | 16 7 8 26 | syl3anc | |- ( ph -> ( A .x. X ) e. V ) |
| 28 | 1 3 2 4 | lmodvscl | |- ( ( W e. LMod /\ A e. K /\ Y e. V ) -> ( A .x. Y ) e. V ) |
| 29 | 16 7 9 28 | syl3anc | |- ( ph -> ( A .x. Y ) e. V ) |
| 30 | 1 17 18 | lmodsubeq0 | |- ( ( W e. LMod /\ ( A .x. X ) e. V /\ ( A .x. Y ) e. V ) -> ( ( ( A .x. X ) ( -g ` W ) ( A .x. Y ) ) = ( 0g ` W ) <-> ( A .x. X ) = ( A .x. Y ) ) ) |
| 31 | 16 27 29 30 | syl3anc | |- ( ph -> ( ( ( A .x. X ) ( -g ` W ) ( A .x. Y ) ) = ( 0g ` W ) <-> ( A .x. X ) = ( A .x. Y ) ) ) |
| 32 | 22 25 31 | 3bitr3d | |- ( ph -> ( ( A = .0. \/ ( X ( -g ` W ) Y ) = ( 0g ` W ) ) <-> ( A .x. X ) = ( A .x. Y ) ) ) |
| 33 | 14 20 32 | 3bitr3rd | |- ( ph -> ( ( A .x. X ) = ( A .x. Y ) <-> X = Y ) ) |