This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 8-Apr-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ltexprlem.1 | ⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) } | |
| Assertion | ltexprlem6 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝐴 ⊊ 𝐵 ) → ( 𝐴 +P 𝐶 ) ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltexprlem.1 | ⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) } | |
| 2 | 1 | ltexprlem5 | ⊢ ( ( 𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵 ) → 𝐶 ∈ P ) |
| 3 | df-plp | ⊢ +P = ( 𝑧 ∈ P , 𝑦 ∈ P ↦ { 𝑓 ∣ ∃ 𝑔 ∈ 𝑧 ∃ ℎ ∈ 𝑦 𝑓 = ( 𝑔 +Q ℎ ) } ) | |
| 4 | addclnq | ⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑔 +Q ℎ ) ∈ Q ) | |
| 5 | 3 4 | genpelv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑧 ∈ ( 𝐴 +P 𝐶 ) ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑥 ∈ 𝐶 𝑧 = ( 𝑤 +Q 𝑥 ) ) ) |
| 6 | 2 5 | sylan2 | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵 ) ) → ( 𝑧 ∈ ( 𝐴 +P 𝐶 ) ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑥 ∈ 𝐶 𝑧 = ( 𝑤 +Q 𝑥 ) ) ) |
| 7 | 1 | eqabri | ⊢ ( 𝑥 ∈ 𝐶 ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
| 8 | elprnq | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑦 +Q 𝑥 ) ∈ Q ) | |
| 9 | addnqf | ⊢ +Q : ( Q × Q ) ⟶ Q | |
| 10 | 9 | fdmi | ⊢ dom +Q = ( Q × Q ) |
| 11 | 0nnq | ⊢ ¬ ∅ ∈ Q | |
| 12 | 10 11 | ndmovrcl | ⊢ ( ( 𝑦 +Q 𝑥 ) ∈ Q → ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) ) |
| 13 | 12 | simpld | ⊢ ( ( 𝑦 +Q 𝑥 ) ∈ Q → 𝑦 ∈ Q ) |
| 14 | 8 13 | syl | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → 𝑦 ∈ Q ) |
| 15 | prub | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ Q ) → ( ¬ 𝑦 ∈ 𝐴 → 𝑤 <Q 𝑦 ) ) | |
| 16 | 14 15 | sylan2 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) → ( ¬ 𝑦 ∈ 𝐴 → 𝑤 <Q 𝑦 ) ) |
| 17 | 12 | simprd | ⊢ ( ( 𝑦 +Q 𝑥 ) ∈ Q → 𝑥 ∈ Q ) |
| 18 | vex | ⊢ 𝑤 ∈ V | |
| 19 | vex | ⊢ 𝑦 ∈ V | |
| 20 | ltanq | ⊢ ( 𝑢 ∈ Q → ( 𝑧 <Q 𝑣 ↔ ( 𝑢 +Q 𝑧 ) <Q ( 𝑢 +Q 𝑣 ) ) ) | |
| 21 | vex | ⊢ 𝑥 ∈ V | |
| 22 | addcomnq | ⊢ ( 𝑧 +Q 𝑣 ) = ( 𝑣 +Q 𝑧 ) | |
| 23 | 18 19 20 21 22 | caovord2 | ⊢ ( 𝑥 ∈ Q → ( 𝑤 <Q 𝑦 ↔ ( 𝑤 +Q 𝑥 ) <Q ( 𝑦 +Q 𝑥 ) ) ) |
| 24 | 8 17 23 | 3syl | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑤 <Q 𝑦 ↔ ( 𝑤 +Q 𝑥 ) <Q ( 𝑦 +Q 𝑥 ) ) ) |
| 25 | prcdnq | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( ( 𝑤 +Q 𝑥 ) <Q ( 𝑦 +Q 𝑥 ) → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) | |
| 26 | 24 25 | sylbid | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑤 <Q 𝑦 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) |
| 27 | 26 | adantl | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) → ( 𝑤 <Q 𝑦 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) |
| 28 | 16 27 | syld | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) → ( ¬ 𝑦 ∈ 𝐴 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) |
| 29 | 28 | exp32 | ⊢ ( ( 𝐴 ∈ P ∧ 𝑤 ∈ 𝐴 ) → ( 𝐵 ∈ P → ( ( 𝑦 +Q 𝑥 ) ∈ 𝐵 → ( ¬ 𝑦 ∈ 𝐴 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) ) ) |
| 30 | 29 | com34 | ⊢ ( ( 𝐴 ∈ P ∧ 𝑤 ∈ 𝐴 ) → ( 𝐵 ∈ P → ( ¬ 𝑦 ∈ 𝐴 → ( ( 𝑦 +Q 𝑥 ) ∈ 𝐵 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) ) ) |
| 31 | 30 | imp4b | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 ∈ 𝐴 ) ∧ 𝐵 ∈ P ) → ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) |
| 32 | 31 | exlimdv | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 ∈ 𝐴 ) ∧ 𝐵 ∈ P ) → ( ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) |
| 33 | 7 32 | biimtrid | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 ∈ 𝐴 ) ∧ 𝐵 ∈ P ) → ( 𝑥 ∈ 𝐶 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) |
| 34 | 33 | exp31 | ⊢ ( 𝐴 ∈ P → ( 𝑤 ∈ 𝐴 → ( 𝐵 ∈ P → ( 𝑥 ∈ 𝐶 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) ) ) |
| 35 | 34 | com23 | ⊢ ( 𝐴 ∈ P → ( 𝐵 ∈ P → ( 𝑤 ∈ 𝐴 → ( 𝑥 ∈ 𝐶 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) ) ) |
| 36 | 35 | imp43 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ) → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) |
| 37 | eleq1 | ⊢ ( 𝑧 = ( 𝑤 +Q 𝑥 ) → ( 𝑧 ∈ 𝐵 ↔ ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) | |
| 38 | 37 | biimparc | ⊢ ( ( ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ∧ 𝑧 = ( 𝑤 +Q 𝑥 ) ) → 𝑧 ∈ 𝐵 ) |
| 39 | 36 38 | sylan | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ) ∧ 𝑧 = ( 𝑤 +Q 𝑥 ) ) → 𝑧 ∈ 𝐵 ) |
| 40 | 39 | exp31 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑤 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑧 = ( 𝑤 +Q 𝑥 ) → 𝑧 ∈ 𝐵 ) ) ) |
| 41 | 40 | rexlimdvv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑥 ∈ 𝐶 𝑧 = ( 𝑤 +Q 𝑥 ) → 𝑧 ∈ 𝐵 ) ) |
| 42 | 41 | adantrr | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵 ) ) → ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑥 ∈ 𝐶 𝑧 = ( 𝑤 +Q 𝑥 ) → 𝑧 ∈ 𝐵 ) ) |
| 43 | 6 42 | sylbid | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵 ) ) → ( 𝑧 ∈ ( 𝐴 +P 𝐶 ) → 𝑧 ∈ 𝐵 ) ) |
| 44 | 43 | ssrdv | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵 ) ) → ( 𝐴 +P 𝐶 ) ⊆ 𝐵 ) |
| 45 | 44 | anassrs | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝐴 ⊊ 𝐵 ) → ( 𝐴 +P 𝐶 ) ⊆ 𝐵 ) |