This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for Proposition 9-3.5(v) of Gleason p. 123. (Contributed by NM, 8-Apr-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltaprlem | ⊢ ( 𝐶 ∈ P → ( 𝐴 <P 𝐵 → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelpr | ⊢ <P ⊆ ( P × P ) | |
| 2 | 1 | brel | ⊢ ( 𝐴 <P 𝐵 → ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ) |
| 3 | 2 | simpld | ⊢ ( 𝐴 <P 𝐵 → 𝐴 ∈ P ) |
| 4 | ltexpri | ⊢ ( 𝐴 <P 𝐵 → ∃ 𝑥 ∈ P ( 𝐴 +P 𝑥 ) = 𝐵 ) | |
| 5 | addclpr | ⊢ ( ( 𝐶 ∈ P ∧ 𝐴 ∈ P ) → ( 𝐶 +P 𝐴 ) ∈ P ) | |
| 6 | ltaddpr | ⊢ ( ( ( 𝐶 +P 𝐴 ) ∈ P ∧ 𝑥 ∈ P ) → ( 𝐶 +P 𝐴 ) <P ( ( 𝐶 +P 𝐴 ) +P 𝑥 ) ) | |
| 7 | addasspr | ⊢ ( ( 𝐶 +P 𝐴 ) +P 𝑥 ) = ( 𝐶 +P ( 𝐴 +P 𝑥 ) ) | |
| 8 | oveq2 | ⊢ ( ( 𝐴 +P 𝑥 ) = 𝐵 → ( 𝐶 +P ( 𝐴 +P 𝑥 ) ) = ( 𝐶 +P 𝐵 ) ) | |
| 9 | 7 8 | eqtrid | ⊢ ( ( 𝐴 +P 𝑥 ) = 𝐵 → ( ( 𝐶 +P 𝐴 ) +P 𝑥 ) = ( 𝐶 +P 𝐵 ) ) |
| 10 | 9 | breq2d | ⊢ ( ( 𝐴 +P 𝑥 ) = 𝐵 → ( ( 𝐶 +P 𝐴 ) <P ( ( 𝐶 +P 𝐴 ) +P 𝑥 ) ↔ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
| 11 | 6 10 | imbitrid | ⊢ ( ( 𝐴 +P 𝑥 ) = 𝐵 → ( ( ( 𝐶 +P 𝐴 ) ∈ P ∧ 𝑥 ∈ P ) → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
| 12 | 11 | expd | ⊢ ( ( 𝐴 +P 𝑥 ) = 𝐵 → ( ( 𝐶 +P 𝐴 ) ∈ P → ( 𝑥 ∈ P → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) ) |
| 13 | 5 12 | syl5 | ⊢ ( ( 𝐴 +P 𝑥 ) = 𝐵 → ( ( 𝐶 ∈ P ∧ 𝐴 ∈ P ) → ( 𝑥 ∈ P → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) ) |
| 14 | 13 | com3r | ⊢ ( 𝑥 ∈ P → ( ( 𝐴 +P 𝑥 ) = 𝐵 → ( ( 𝐶 ∈ P ∧ 𝐴 ∈ P ) → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) ) |
| 15 | 14 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ P ( 𝐴 +P 𝑥 ) = 𝐵 → ( ( 𝐶 ∈ P ∧ 𝐴 ∈ P ) → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
| 16 | 4 15 | syl | ⊢ ( 𝐴 <P 𝐵 → ( ( 𝐶 ∈ P ∧ 𝐴 ∈ P ) → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
| 17 | 3 16 | sylan2i | ⊢ ( 𝐴 <P 𝐵 → ( ( 𝐶 ∈ P ∧ 𝐴 <P 𝐵 ) → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
| 18 | 17 | expd | ⊢ ( 𝐴 <P 𝐵 → ( 𝐶 ∈ P → ( 𝐴 <P 𝐵 → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) ) |
| 19 | 18 | pm2.43b | ⊢ ( 𝐶 ∈ P → ( 𝐴 <P 𝐵 → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |