This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finite bag order is a well-order, given a well-order of the index set. (Contributed by Mario Carneiro, 2-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltbval.c | |- C = ( T |
|
| ltbval.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| ltbval.i | |- ( ph -> I e. V ) |
||
| ltbval.t | |- ( ph -> T e. W ) |
||
| ltbwe.w | |- ( ph -> T We I ) |
||
| Assertion | ltbwe | |- ( ph -> C We D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltbval.c | |- C = ( T |
|
| 2 | ltbval.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 3 | ltbval.i | |- ( ph -> I e. V ) |
|
| 4 | ltbval.t | |- ( ph -> T e. W ) |
|
| 5 | ltbwe.w | |- ( ph -> T We I ) |
|
| 6 | eqid | |- { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } = { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } |
|
| 7 | breq1 | |- ( h = x -> ( h finSupp 0 <-> x finSupp 0 ) ) |
|
| 8 | 7 | cbvrabv | |- { h e. ( NN0 ^m I ) | h finSupp 0 } = { x e. ( NN0 ^m I ) | x finSupp 0 } |
| 9 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 10 | ltweuz | |- < We ( ZZ>= ` 0 ) |
|
| 11 | weeq2 | |- ( NN0 = ( ZZ>= ` 0 ) -> ( < We NN0 <-> < We ( ZZ>= ` 0 ) ) ) |
|
| 12 | 10 11 | mpbiri | |- ( NN0 = ( ZZ>= ` 0 ) -> < We NN0 ) |
| 13 | 9 12 | mp1i | |- ( ph -> < We NN0 ) |
| 14 | 0nn0 | |- 0 e. NN0 |
|
| 15 | ne0i | |- ( 0 e. NN0 -> NN0 =/= (/) ) |
|
| 16 | 14 15 | mp1i | |- ( ph -> NN0 =/= (/) ) |
| 17 | eqid | |- OrdIso ( T , I ) = OrdIso ( T , I ) |
|
| 18 | 0z | |- 0 e. ZZ |
|
| 19 | hashgval2 | |- ( # |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| 20 | 18 19 | om2uzoi | |- ( # |` _om ) = OrdIso ( < , ( ZZ>= ` 0 ) ) |
| 21 | oieq2 | |- ( NN0 = ( ZZ>= ` 0 ) -> OrdIso ( < , NN0 ) = OrdIso ( < , ( ZZ>= ` 0 ) ) ) |
|
| 22 | 9 21 | ax-mp | |- OrdIso ( < , NN0 ) = OrdIso ( < , ( ZZ>= ` 0 ) ) |
| 23 | 20 22 | eqtr4i | |- ( # |` _om ) = OrdIso ( < , NN0 ) |
| 24 | peano1 | |- (/) e. _om |
|
| 25 | fvres | |- ( (/) e. _om -> ( ( # |` _om ) ` (/) ) = ( # ` (/) ) ) |
|
| 26 | 24 25 | ax-mp | |- ( ( # |` _om ) ` (/) ) = ( # ` (/) ) |
| 27 | hash0 | |- ( # ` (/) ) = 0 |
|
| 28 | 26 27 | eqtr2i | |- 0 = ( ( # |` _om ) ` (/) ) |
| 29 | 6 8 5 13 16 17 23 28 | wemapwe | |- ( ph -> { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } We { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
| 30 | elmapfun | |- ( h e. ( NN0 ^m I ) -> Fun h ) |
|
| 31 | 30 | adantl | |- ( ( ph /\ h e. ( NN0 ^m I ) ) -> Fun h ) |
| 32 | simpr | |- ( ( ph /\ h e. ( NN0 ^m I ) ) -> h e. ( NN0 ^m I ) ) |
|
| 33 | c0ex | |- 0 e. _V |
|
| 34 | 33 | a1i | |- ( ( ph /\ h e. ( NN0 ^m I ) ) -> 0 e. _V ) |
| 35 | funisfsupp | |- ( ( Fun h /\ h e. ( NN0 ^m I ) /\ 0 e. _V ) -> ( h finSupp 0 <-> ( h supp 0 ) e. Fin ) ) |
|
| 36 | 31 32 34 35 | syl3anc | |- ( ( ph /\ h e. ( NN0 ^m I ) ) -> ( h finSupp 0 <-> ( h supp 0 ) e. Fin ) ) |
| 37 | elmapi | |- ( h e. ( NN0 ^m I ) -> h : I --> NN0 ) |
|
| 38 | fcdmnn0supp | |- ( ( I e. V /\ h : I --> NN0 ) -> ( h supp 0 ) = ( `' h " NN ) ) |
|
| 39 | 38 | eleq1d | |- ( ( I e. V /\ h : I --> NN0 ) -> ( ( h supp 0 ) e. Fin <-> ( `' h " NN ) e. Fin ) ) |
| 40 | 3 37 39 | syl2an | |- ( ( ph /\ h e. ( NN0 ^m I ) ) -> ( ( h supp 0 ) e. Fin <-> ( `' h " NN ) e. Fin ) ) |
| 41 | 36 40 | bitr2d | |- ( ( ph /\ h e. ( NN0 ^m I ) ) -> ( ( `' h " NN ) e. Fin <-> h finSupp 0 ) ) |
| 42 | 41 | rabbidva | |- ( ph -> { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
| 43 | 2 42 | eqtrid | |- ( ph -> D = { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
| 44 | weeq2 | |- ( D = { h e. ( NN0 ^m I ) | h finSupp 0 } -> ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } We D <-> { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } We { h e. ( NN0 ^m I ) | h finSupp 0 } ) ) |
|
| 45 | 43 44 | syl | |- ( ph -> ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } We D <-> { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } We { h e. ( NN0 ^m I ) | h finSupp 0 } ) ) |
| 46 | 29 45 | mpbird | |- ( ph -> { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } We D ) |
| 47 | weinxp | |- ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } We D <-> ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } i^i ( D X. D ) ) We D ) |
|
| 48 | 46 47 | sylib | |- ( ph -> ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } i^i ( D X. D ) ) We D ) |
| 49 | 1 2 3 4 | ltbval | |- ( ph -> C = { <. x , y >. | ( { x , y } C_ D /\ E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) ) } ) |
| 50 | df-xp | |- ( D X. D ) = { <. x , y >. | ( x e. D /\ y e. D ) } |
|
| 51 | vex | |- x e. _V |
|
| 52 | vex | |- y e. _V |
|
| 53 | 51 52 | prss | |- ( ( x e. D /\ y e. D ) <-> { x , y } C_ D ) |
| 54 | 53 | opabbii | |- { <. x , y >. | ( x e. D /\ y e. D ) } = { <. x , y >. | { x , y } C_ D } |
| 55 | 50 54 | eqtr2i | |- { <. x , y >. | { x , y } C_ D } = ( D X. D ) |
| 56 | 55 | ineq1i | |- ( { <. x , y >. | { x , y } C_ D } i^i { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } ) = ( ( D X. D ) i^i { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } ) |
| 57 | inopab | |- ( { <. x , y >. | { x , y } C_ D } i^i { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } ) = { <. x , y >. | ( { x , y } C_ D /\ E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) ) } |
|
| 58 | incom | |- ( ( D X. D ) i^i { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } ) = ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } i^i ( D X. D ) ) |
|
| 59 | 56 57 58 | 3eqtr3i | |- { <. x , y >. | ( { x , y } C_ D /\ E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) ) } = ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } i^i ( D X. D ) ) |
| 60 | 49 59 | eqtrdi | |- ( ph -> C = ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } i^i ( D X. D ) ) ) |
| 61 | weeq1 | |- ( C = ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } i^i ( D X. D ) ) -> ( C We D <-> ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } i^i ( D X. D ) ) We D ) ) |
|
| 62 | 60 61 | syl | |- ( ph -> ( C We D <-> ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } i^i ( D X. D ) ) We D ) ) |
| 63 | 48 62 | mpbird | |- ( ph -> C We D ) |