This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternative definition of G in terms of df-oi . (Contributed by Mario Carneiro, 2-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | ||
| Assertion | om2uzoi | ⊢ 𝐺 = OrdIso ( < , ( ℤ≥ ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| 2 | om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | |
| 3 | ordom | ⊢ Ord ω | |
| 4 | 1 2 | om2uzisoi | ⊢ 𝐺 Isom E , < ( ω , ( ℤ≥ ‘ 𝐶 ) ) |
| 5 | 3 4 | pm3.2i | ⊢ ( Ord ω ∧ 𝐺 Isom E , < ( ω , ( ℤ≥ ‘ 𝐶 ) ) ) |
| 6 | ordwe | ⊢ ( Ord ω → E We ω ) | |
| 7 | 3 6 | ax-mp | ⊢ E We ω |
| 8 | isowe | ⊢ ( 𝐺 Isom E , < ( ω , ( ℤ≥ ‘ 𝐶 ) ) → ( E We ω ↔ < We ( ℤ≥ ‘ 𝐶 ) ) ) | |
| 9 | 4 8 | ax-mp | ⊢ ( E We ω ↔ < We ( ℤ≥ ‘ 𝐶 ) ) |
| 10 | 7 9 | mpbi | ⊢ < We ( ℤ≥ ‘ 𝐶 ) |
| 11 | fvex | ⊢ ( ℤ≥ ‘ 𝐶 ) ∈ V | |
| 12 | exse | ⊢ ( ( ℤ≥ ‘ 𝐶 ) ∈ V → < Se ( ℤ≥ ‘ 𝐶 ) ) | |
| 13 | 11 12 | ax-mp | ⊢ < Se ( ℤ≥ ‘ 𝐶 ) |
| 14 | eqid | ⊢ OrdIso ( < , ( ℤ≥ ‘ 𝐶 ) ) = OrdIso ( < , ( ℤ≥ ‘ 𝐶 ) ) | |
| 15 | 14 | oieu | ⊢ ( ( < We ( ℤ≥ ‘ 𝐶 ) ∧ < Se ( ℤ≥ ‘ 𝐶 ) ) → ( ( Ord ω ∧ 𝐺 Isom E , < ( ω , ( ℤ≥ ‘ 𝐶 ) ) ) ↔ ( ω = dom OrdIso ( < , ( ℤ≥ ‘ 𝐶 ) ) ∧ 𝐺 = OrdIso ( < , ( ℤ≥ ‘ 𝐶 ) ) ) ) ) |
| 16 | 10 13 15 | mp2an | ⊢ ( ( Ord ω ∧ 𝐺 Isom E , < ( ω , ( ℤ≥ ‘ 𝐶 ) ) ) ↔ ( ω = dom OrdIso ( < , ( ℤ≥ ‘ 𝐶 ) ) ∧ 𝐺 = OrdIso ( < , ( ℤ≥ ‘ 𝐶 ) ) ) ) |
| 17 | 5 16 | mpbi | ⊢ ( ω = dom OrdIso ( < , ( ℤ≥ ‘ 𝐶 ) ) ∧ 𝐺 = OrdIso ( < , ( ℤ≥ ‘ 𝐶 ) ) ) |
| 18 | 17 | simpri | ⊢ 𝐺 = OrdIso ( < , ( ℤ≥ ‘ 𝐶 ) ) |