This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation does not change the span of a singleton. (Contributed by NM, 24-Apr-2014) (Proof shortened by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnneg.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspsnneg.m | ⊢ 𝑀 = ( invg ‘ 𝑊 ) | ||
| lspsnneg.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | lspsnneg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑀 ‘ 𝑋 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnneg.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspsnneg.m | ⊢ 𝑀 = ( invg ‘ 𝑊 ) | |
| 3 | lspsnneg.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 7 | eqid | ⊢ ( invg ‘ ( Scalar ‘ 𝑊 ) ) = ( invg ‘ ( Scalar ‘ 𝑊 ) ) | |
| 8 | 1 2 4 5 6 7 | lmodvneg1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = ( 𝑀 ‘ 𝑋 ) ) |
| 9 | 8 | sneqd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → { ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) } = { ( 𝑀 ‘ 𝑋 ) } ) |
| 10 | 9 | fveq2d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) } ) = ( 𝑁 ‘ { ( 𝑀 ‘ 𝑋 ) } ) ) |
| 11 | simpl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ LMod ) | |
| 12 | 4 | lmodfgrp | ⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
| 13 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 14 | 4 13 6 | lmod1cl | ⊢ ( 𝑊 ∈ LMod → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 15 | 13 7 | grpinvcl | ⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ Grp ∧ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 16 | 12 14 15 | syl2anc | ⊢ ( 𝑊 ∈ LMod → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 18 | simpr | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) | |
| 19 | 4 13 1 5 3 | lspsnvsi | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) } ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
| 20 | 11 17 18 19 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) } ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
| 21 | 10 20 | eqsstrrd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑀 ‘ 𝑋 ) } ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
| 22 | 1 2 | lmodvnegcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ 𝑋 ) ∈ 𝑉 ) |
| 23 | 1 2 4 5 6 7 | lmodvneg1 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑀 ‘ 𝑋 ) ∈ 𝑉 ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑀 ‘ 𝑋 ) ) = ( 𝑀 ‘ ( 𝑀 ‘ 𝑋 ) ) ) |
| 24 | 22 23 | syldan | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑀 ‘ 𝑋 ) ) = ( 𝑀 ‘ ( 𝑀 ‘ 𝑋 ) ) ) |
| 25 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 26 | 1 2 | grpinvinv | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝑀 ‘ 𝑋 ) ) = 𝑋 ) |
| 27 | 25 26 | sylan | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝑀 ‘ 𝑋 ) ) = 𝑋 ) |
| 28 | 24 27 | eqtrd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑀 ‘ 𝑋 ) ) = 𝑋 ) |
| 29 | 28 | sneqd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → { ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑀 ‘ 𝑋 ) ) } = { 𝑋 } ) |
| 30 | 29 | fveq2d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑀 ‘ 𝑋 ) ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 31 | 4 13 1 5 3 | lspsnvsi | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑀 ‘ 𝑋 ) ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑀 ‘ 𝑋 ) ) } ) ⊆ ( 𝑁 ‘ { ( 𝑀 ‘ 𝑋 ) } ) ) |
| 32 | 11 17 22 31 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑀 ‘ 𝑋 ) ) } ) ⊆ ( 𝑁 ‘ { ( 𝑀 ‘ 𝑋 ) } ) ) |
| 33 | 30 32 | eqsstrrd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { ( 𝑀 ‘ 𝑋 ) } ) ) |
| 34 | 21 33 | eqssd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑀 ‘ 𝑋 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |