This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation does not change the span of a singleton. (Contributed by NM, 24-Apr-2014) (Proof shortened by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnneg.v | |- V = ( Base ` W ) |
|
| lspsnneg.m | |- M = ( invg ` W ) |
||
| lspsnneg.n | |- N = ( LSpan ` W ) |
||
| Assertion | lspsnneg | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { ( M ` X ) } ) = ( N ` { X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnneg.v | |- V = ( Base ` W ) |
|
| 2 | lspsnneg.m | |- M = ( invg ` W ) |
|
| 3 | lspsnneg.n | |- N = ( LSpan ` W ) |
|
| 4 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 5 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 6 | eqid | |- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
|
| 7 | eqid | |- ( invg ` ( Scalar ` W ) ) = ( invg ` ( Scalar ` W ) ) |
|
| 8 | 1 2 4 5 6 7 | lmodvneg1 | |- ( ( W e. LMod /\ X e. V ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) = ( M ` X ) ) |
| 9 | 8 | sneqd | |- ( ( W e. LMod /\ X e. V ) -> { ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) } = { ( M ` X ) } ) |
| 10 | 9 | fveq2d | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) } ) = ( N ` { ( M ` X ) } ) ) |
| 11 | simpl | |- ( ( W e. LMod /\ X e. V ) -> W e. LMod ) |
|
| 12 | 4 | lmodfgrp | |- ( W e. LMod -> ( Scalar ` W ) e. Grp ) |
| 13 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 14 | 4 13 6 | lmod1cl | |- ( W e. LMod -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 15 | 13 7 | grpinvcl | |- ( ( ( Scalar ` W ) e. Grp /\ ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) -> ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 16 | 12 14 15 | syl2anc | |- ( W e. LMod -> ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 17 | 16 | adantr | |- ( ( W e. LMod /\ X e. V ) -> ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 18 | simpr | |- ( ( W e. LMod /\ X e. V ) -> X e. V ) |
|
| 19 | 4 13 1 5 3 | lspsnvsi | |- ( ( W e. LMod /\ ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) /\ X e. V ) -> ( N ` { ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) } ) C_ ( N ` { X } ) ) |
| 20 | 11 17 18 19 | syl3anc | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) } ) C_ ( N ` { X } ) ) |
| 21 | 10 20 | eqsstrrd | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { ( M ` X ) } ) C_ ( N ` { X } ) ) |
| 22 | 1 2 | lmodvnegcl | |- ( ( W e. LMod /\ X e. V ) -> ( M ` X ) e. V ) |
| 23 | 1 2 4 5 6 7 | lmodvneg1 | |- ( ( W e. LMod /\ ( M ` X ) e. V ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) ( M ` X ) ) = ( M ` ( M ` X ) ) ) |
| 24 | 22 23 | syldan | |- ( ( W e. LMod /\ X e. V ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) ( M ` X ) ) = ( M ` ( M ` X ) ) ) |
| 25 | lmodgrp | |- ( W e. LMod -> W e. Grp ) |
|
| 26 | 1 2 | grpinvinv | |- ( ( W e. Grp /\ X e. V ) -> ( M ` ( M ` X ) ) = X ) |
| 27 | 25 26 | sylan | |- ( ( W e. LMod /\ X e. V ) -> ( M ` ( M ` X ) ) = X ) |
| 28 | 24 27 | eqtrd | |- ( ( W e. LMod /\ X e. V ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) ( M ` X ) ) = X ) |
| 29 | 28 | sneqd | |- ( ( W e. LMod /\ X e. V ) -> { ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) ( M ` X ) ) } = { X } ) |
| 30 | 29 | fveq2d | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) ( M ` X ) ) } ) = ( N ` { X } ) ) |
| 31 | 4 13 1 5 3 | lspsnvsi | |- ( ( W e. LMod /\ ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) /\ ( M ` X ) e. V ) -> ( N ` { ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) ( M ` X ) ) } ) C_ ( N ` { ( M ` X ) } ) ) |
| 32 | 11 17 22 31 | syl3anc | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) ( M ` X ) ) } ) C_ ( N ` { ( M ` X ) } ) ) |
| 33 | 30 32 | eqsstrrd | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) C_ ( N ` { ( M ` X ) } ) ) |
| 34 | 21 33 | eqssd | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { ( M ` X ) } ) = ( N ` { X } ) ) |