This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swapping subtraction order does not change the span of a singleton. (Contributed by NM, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnsub.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspsnsub.s | ⊢ − = ( -g ‘ 𝑊 ) | ||
| lspsnsub.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspsnsub.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lspsnsub.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspsnsub.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| Assertion | lspsnsub | ⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) = ( 𝑁 ‘ { ( 𝑌 − 𝑋 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnsub.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspsnsub.s | ⊢ − = ( -g ‘ 𝑊 ) | |
| 3 | lspsnsub.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspsnsub.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 5 | lspsnsub.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 6 | lspsnsub.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 7 | 1 2 | lmodvsubcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 − 𝑌 ) ∈ 𝑉 ) |
| 8 | 4 5 6 7 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ∈ 𝑉 ) |
| 9 | eqid | ⊢ ( invg ‘ 𝑊 ) = ( invg ‘ 𝑊 ) | |
| 10 | 1 9 3 | lspsnneg | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑋 − 𝑌 ) ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ ( 𝑋 − 𝑌 ) ) } ) = ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) |
| 11 | 4 8 10 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ ( 𝑋 − 𝑌 ) ) } ) = ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) |
| 12 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 13 | 4 12 | syl | ⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
| 14 | 1 2 9 | grpinvsub | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( invg ‘ 𝑊 ) ‘ ( 𝑋 − 𝑌 ) ) = ( 𝑌 − 𝑋 ) ) |
| 15 | 13 5 6 14 | syl3anc | ⊢ ( 𝜑 → ( ( invg ‘ 𝑊 ) ‘ ( 𝑋 − 𝑌 ) ) = ( 𝑌 − 𝑋 ) ) |
| 16 | 15 | sneqd | ⊢ ( 𝜑 → { ( ( invg ‘ 𝑊 ) ‘ ( 𝑋 − 𝑌 ) ) } = { ( 𝑌 − 𝑋 ) } ) |
| 17 | 16 | fveq2d | ⊢ ( 𝜑 → ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ ( 𝑋 − 𝑌 ) ) } ) = ( 𝑁 ‘ { ( 𝑌 − 𝑋 ) } ) ) |
| 18 | 11 17 | eqtr3d | ⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) = ( 𝑁 ‘ { ( 𝑌 − 𝑋 ) } ) ) |