This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014) (Proof shortened by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsn.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| lspsn.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lspsn.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| lspsn.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lspsn.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | lspsn | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) = { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsn.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | lspsn.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | lspsn.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | lspsn.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 5 | lspsn.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 7 | simpl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ LMod ) | |
| 8 | 3 1 4 2 6 | lss1d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) } ∈ ( LSubSp ‘ 𝑊 ) ) |
| 9 | eqid | ⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) | |
| 10 | 1 2 9 | lmod1cl | ⊢ ( 𝑊 ∈ LMod → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 11 | 3 1 4 9 | lmodvs1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ) |
| 12 | 11 | eqcomd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 = ( ( 1r ‘ 𝐹 ) · 𝑋 ) ) |
| 13 | oveq1 | ⊢ ( 𝑘 = ( 1r ‘ 𝐹 ) → ( 𝑘 · 𝑋 ) = ( ( 1r ‘ 𝐹 ) · 𝑋 ) ) | |
| 14 | 13 | rspceeqv | ⊢ ( ( ( 1r ‘ 𝐹 ) ∈ 𝐾 ∧ 𝑋 = ( ( 1r ‘ 𝐹 ) · 𝑋 ) ) → ∃ 𝑘 ∈ 𝐾 𝑋 = ( 𝑘 · 𝑋 ) ) |
| 15 | 10 12 14 | syl2an2r | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑘 ∈ 𝐾 𝑋 = ( 𝑘 · 𝑋 ) ) |
| 16 | eqeq1 | ⊢ ( 𝑣 = 𝑋 → ( 𝑣 = ( 𝑘 · 𝑋 ) ↔ 𝑋 = ( 𝑘 · 𝑋 ) ) ) | |
| 17 | 16 | rexbidv | ⊢ ( 𝑣 = 𝑋 → ( ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) ↔ ∃ 𝑘 ∈ 𝐾 𝑋 = ( 𝑘 · 𝑋 ) ) ) |
| 18 | 17 | elabg | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) } ↔ ∃ 𝑘 ∈ 𝐾 𝑋 = ( 𝑘 · 𝑋 ) ) ) |
| 19 | 18 | adantl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ∈ { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) } ↔ ∃ 𝑘 ∈ 𝐾 𝑋 = ( 𝑘 · 𝑋 ) ) ) |
| 20 | 15 19 | mpbird | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) } ) |
| 21 | 6 5 7 8 20 | ellspsn5 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) } ) |
| 22 | 7 | adantr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ 𝐾 ) → 𝑊 ∈ LMod ) |
| 23 | 3 6 5 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 24 | 23 | adantr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ 𝐾 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 25 | simpr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ 𝐾 ) → 𝑘 ∈ 𝐾 ) | |
| 26 | 3 5 | lspsnid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 27 | 26 | adantr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ 𝐾 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 28 | 1 4 2 6 | lssvscl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝑘 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 29 | 22 24 25 27 28 | syl22anc | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ 𝐾 ) → ( 𝑘 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 30 | eleq1a | ⊢ ( ( 𝑘 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) → ( 𝑣 = ( 𝑘 · 𝑋 ) → 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) | |
| 31 | 29 30 | syl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ 𝐾 ) → ( 𝑣 = ( 𝑘 · 𝑋 ) → 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 32 | 31 | rexlimdva | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) → 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 33 | 32 | abssdv | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) } ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
| 34 | 21 33 | eqssd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) = { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) } ) |