This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014) (Proof shortened by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsn.f | |- F = ( Scalar ` W ) |
|
| lspsn.k | |- K = ( Base ` F ) |
||
| lspsn.v | |- V = ( Base ` W ) |
||
| lspsn.t | |- .x. = ( .s ` W ) |
||
| lspsn.n | |- N = ( LSpan ` W ) |
||
| Assertion | lspsn | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) = { v | E. k e. K v = ( k .x. X ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsn.f | |- F = ( Scalar ` W ) |
|
| 2 | lspsn.k | |- K = ( Base ` F ) |
|
| 3 | lspsn.v | |- V = ( Base ` W ) |
|
| 4 | lspsn.t | |- .x. = ( .s ` W ) |
|
| 5 | lspsn.n | |- N = ( LSpan ` W ) |
|
| 6 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 7 | simpl | |- ( ( W e. LMod /\ X e. V ) -> W e. LMod ) |
|
| 8 | 3 1 4 2 6 | lss1d | |- ( ( W e. LMod /\ X e. V ) -> { v | E. k e. K v = ( k .x. X ) } e. ( LSubSp ` W ) ) |
| 9 | eqid | |- ( 1r ` F ) = ( 1r ` F ) |
|
| 10 | 1 2 9 | lmod1cl | |- ( W e. LMod -> ( 1r ` F ) e. K ) |
| 11 | 3 1 4 9 | lmodvs1 | |- ( ( W e. LMod /\ X e. V ) -> ( ( 1r ` F ) .x. X ) = X ) |
| 12 | 11 | eqcomd | |- ( ( W e. LMod /\ X e. V ) -> X = ( ( 1r ` F ) .x. X ) ) |
| 13 | oveq1 | |- ( k = ( 1r ` F ) -> ( k .x. X ) = ( ( 1r ` F ) .x. X ) ) |
|
| 14 | 13 | rspceeqv | |- ( ( ( 1r ` F ) e. K /\ X = ( ( 1r ` F ) .x. X ) ) -> E. k e. K X = ( k .x. X ) ) |
| 15 | 10 12 14 | syl2an2r | |- ( ( W e. LMod /\ X e. V ) -> E. k e. K X = ( k .x. X ) ) |
| 16 | eqeq1 | |- ( v = X -> ( v = ( k .x. X ) <-> X = ( k .x. X ) ) ) |
|
| 17 | 16 | rexbidv | |- ( v = X -> ( E. k e. K v = ( k .x. X ) <-> E. k e. K X = ( k .x. X ) ) ) |
| 18 | 17 | elabg | |- ( X e. V -> ( X e. { v | E. k e. K v = ( k .x. X ) } <-> E. k e. K X = ( k .x. X ) ) ) |
| 19 | 18 | adantl | |- ( ( W e. LMod /\ X e. V ) -> ( X e. { v | E. k e. K v = ( k .x. X ) } <-> E. k e. K X = ( k .x. X ) ) ) |
| 20 | 15 19 | mpbird | |- ( ( W e. LMod /\ X e. V ) -> X e. { v | E. k e. K v = ( k .x. X ) } ) |
| 21 | 6 5 7 8 20 | ellspsn5 | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) C_ { v | E. k e. K v = ( k .x. X ) } ) |
| 22 | 7 | adantr | |- ( ( ( W e. LMod /\ X e. V ) /\ k e. K ) -> W e. LMod ) |
| 23 | 3 6 5 | lspsncl | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
| 24 | 23 | adantr | |- ( ( ( W e. LMod /\ X e. V ) /\ k e. K ) -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
| 25 | simpr | |- ( ( ( W e. LMod /\ X e. V ) /\ k e. K ) -> k e. K ) |
|
| 26 | 3 5 | lspsnid | |- ( ( W e. LMod /\ X e. V ) -> X e. ( N ` { X } ) ) |
| 27 | 26 | adantr | |- ( ( ( W e. LMod /\ X e. V ) /\ k e. K ) -> X e. ( N ` { X } ) ) |
| 28 | 1 4 2 6 | lssvscl | |- ( ( ( W e. LMod /\ ( N ` { X } ) e. ( LSubSp ` W ) ) /\ ( k e. K /\ X e. ( N ` { X } ) ) ) -> ( k .x. X ) e. ( N ` { X } ) ) |
| 29 | 22 24 25 27 28 | syl22anc | |- ( ( ( W e. LMod /\ X e. V ) /\ k e. K ) -> ( k .x. X ) e. ( N ` { X } ) ) |
| 30 | eleq1a | |- ( ( k .x. X ) e. ( N ` { X } ) -> ( v = ( k .x. X ) -> v e. ( N ` { X } ) ) ) |
|
| 31 | 29 30 | syl | |- ( ( ( W e. LMod /\ X e. V ) /\ k e. K ) -> ( v = ( k .x. X ) -> v e. ( N ` { X } ) ) ) |
| 32 | 31 | rexlimdva | |- ( ( W e. LMod /\ X e. V ) -> ( E. k e. K v = ( k .x. X ) -> v e. ( N ` { X } ) ) ) |
| 33 | 32 | abssdv | |- ( ( W e. LMod /\ X e. V ) -> { v | E. k e. K v = ( k .x. X ) } C_ ( N ` { X } ) ) |
| 34 | 21 33 | eqssd | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) = { v | E. k e. K v = ( k .x. X ) } ) |