This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum is associative. (Contributed by NM, 2-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsmub1.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| Assertion | lsmass | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑅 ⊕ 𝑇 ) ⊕ 𝑈 ) = ( 𝑅 ⊕ ( 𝑇 ⊕ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmub1.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 4 | 2 3 1 | lsmval | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑅 ⊕ 𝑇 ) = ran ( 𝑎 ∈ 𝑅 , 𝑏 ∈ 𝑇 ↦ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ) |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑅 ⊕ 𝑇 ) = ran ( 𝑎 ∈ 𝑅 , 𝑏 ∈ 𝑇 ↦ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ) |
| 6 | 5 | rexeqdv | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ∃ 𝑦 ∈ ( 𝑅 ⊕ 𝑇 ) ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑐 ) ↔ ∃ 𝑦 ∈ ran ( 𝑎 ∈ 𝑅 , 𝑏 ∈ 𝑇 ↦ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑐 ) ) ) |
| 7 | ovex | ⊢ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ V | |
| 8 | 7 | rgen2w | ⊢ ∀ 𝑎 ∈ 𝑅 ∀ 𝑏 ∈ 𝑇 ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ V |
| 9 | eqid | ⊢ ( 𝑎 ∈ 𝑅 , 𝑏 ∈ 𝑇 ↦ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) = ( 𝑎 ∈ 𝑅 , 𝑏 ∈ 𝑇 ↦ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) | |
| 10 | oveq1 | ⊢ ( 𝑦 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑐 ) = ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ( +g ‘ 𝐺 ) 𝑐 ) ) | |
| 11 | 10 | eqeq2d | ⊢ ( 𝑦 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) → ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑐 ) ↔ 𝑥 = ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ( +g ‘ 𝐺 ) 𝑐 ) ) ) |
| 12 | 11 | rexbidv | ⊢ ( 𝑦 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) → ( ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑐 ) ↔ ∃ 𝑐 ∈ 𝑈 𝑥 = ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ( +g ‘ 𝐺 ) 𝑐 ) ) ) |
| 13 | 9 12 | rexrnmpo | ⊢ ( ∀ 𝑎 ∈ 𝑅 ∀ 𝑏 ∈ 𝑇 ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ V → ( ∃ 𝑦 ∈ ran ( 𝑎 ∈ 𝑅 , 𝑏 ∈ 𝑇 ↦ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑐 ) ↔ ∃ 𝑎 ∈ 𝑅 ∃ 𝑏 ∈ 𝑇 ∃ 𝑐 ∈ 𝑈 𝑥 = ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ( +g ‘ 𝐺 ) 𝑐 ) ) ) |
| 14 | 8 13 | ax-mp | ⊢ ( ∃ 𝑦 ∈ ran ( 𝑎 ∈ 𝑅 , 𝑏 ∈ 𝑇 ↦ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑐 ) ↔ ∃ 𝑎 ∈ 𝑅 ∃ 𝑏 ∈ 𝑇 ∃ 𝑐 ∈ 𝑈 𝑥 = ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ( +g ‘ 𝐺 ) 𝑐 ) ) |
| 15 | 6 14 | bitrdi | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ∃ 𝑦 ∈ ( 𝑅 ⊕ 𝑇 ) ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑐 ) ↔ ∃ 𝑎 ∈ 𝑅 ∃ 𝑏 ∈ 𝑇 ∃ 𝑐 ∈ 𝑈 𝑥 = ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ( +g ‘ 𝐺 ) 𝑐 ) ) ) |
| 16 | 2 3 1 | lsmval | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑇 ⊕ 𝑈 ) = ran ( 𝑏 ∈ 𝑇 , 𝑐 ∈ 𝑈 ↦ ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) ) ) |
| 17 | 16 | 3adant1 | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑇 ⊕ 𝑈 ) = ran ( 𝑏 ∈ 𝑇 , 𝑐 ∈ 𝑈 ↦ ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) ) ) |
| 18 | 17 | rexeqdv | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ∃ 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑧 ) ↔ ∃ 𝑧 ∈ ran ( 𝑏 ∈ 𝑇 , 𝑐 ∈ 𝑈 ↦ ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) ) 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 19 | ovex | ⊢ ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) ∈ V | |
| 20 | 19 | rgen2w | ⊢ ∀ 𝑏 ∈ 𝑇 ∀ 𝑐 ∈ 𝑈 ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) ∈ V |
| 21 | eqid | ⊢ ( 𝑏 ∈ 𝑇 , 𝑐 ∈ 𝑈 ↦ ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) ) = ( 𝑏 ∈ 𝑇 , 𝑐 ∈ 𝑈 ↦ ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) ) | |
| 22 | oveq2 | ⊢ ( 𝑧 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑎 ( +g ‘ 𝐺 ) ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) ) ) | |
| 23 | 22 | eqeq2d | ⊢ ( 𝑧 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) → ( 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑧 ) ↔ 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) ) ) ) |
| 24 | 21 23 | rexrnmpo | ⊢ ( ∀ 𝑏 ∈ 𝑇 ∀ 𝑐 ∈ 𝑈 ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) ∈ V → ( ∃ 𝑧 ∈ ran ( 𝑏 ∈ 𝑇 , 𝑐 ∈ 𝑈 ↦ ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) ) 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑧 ) ↔ ∃ 𝑏 ∈ 𝑇 ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) ) ) ) |
| 25 | 20 24 | ax-mp | ⊢ ( ∃ 𝑧 ∈ ran ( 𝑏 ∈ 𝑇 , 𝑐 ∈ 𝑈 ↦ ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) ) 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑧 ) ↔ ∃ 𝑏 ∈ 𝑇 ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) ) ) |
| 26 | 18 25 | bitrdi | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ∃ 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑧 ) ↔ ∃ 𝑏 ∈ 𝑇 ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) ) ) ) |
| 27 | 26 | adantr | ⊢ ( ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑎 ∈ 𝑅 ) → ( ∃ 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑧 ) ↔ ∃ 𝑏 ∈ 𝑇 ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) ) ) ) |
| 28 | subgrcl | ⊢ ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 29 | 28 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐺 ∈ Grp ) |
| 30 | 29 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑎 ∈ 𝑅 ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈 ) ) → 𝐺 ∈ Grp ) |
| 31 | 2 | subgss | ⊢ ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) → 𝑅 ⊆ ( Base ‘ 𝐺 ) ) |
| 32 | 31 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑅 ⊆ ( Base ‘ 𝐺 ) ) |
| 33 | 32 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑎 ∈ 𝑅 ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈 ) ) → 𝑅 ⊆ ( Base ‘ 𝐺 ) ) |
| 34 | simplr | ⊢ ( ( ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑎 ∈ 𝑅 ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈 ) ) → 𝑎 ∈ 𝑅 ) | |
| 35 | 33 34 | sseldd | ⊢ ( ( ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑎 ∈ 𝑅 ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈 ) ) → 𝑎 ∈ ( Base ‘ 𝐺 ) ) |
| 36 | 2 | subgss | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 37 | 36 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 38 | 37 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑎 ∈ 𝑅 ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈 ) ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 39 | simprl | ⊢ ( ( ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑎 ∈ 𝑅 ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈 ) ) → 𝑏 ∈ 𝑇 ) | |
| 40 | 38 39 | sseldd | ⊢ ( ( ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑎 ∈ 𝑅 ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈 ) ) → 𝑏 ∈ ( Base ‘ 𝐺 ) ) |
| 41 | 2 | subgss | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 42 | 41 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 43 | 42 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑎 ∈ 𝑅 ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈 ) ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 44 | simprr | ⊢ ( ( ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑎 ∈ 𝑅 ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈 ) ) → 𝑐 ∈ 𝑈 ) | |
| 45 | 43 44 | sseldd | ⊢ ( ( ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑎 ∈ 𝑅 ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈 ) ) → 𝑐 ∈ ( Base ‘ 𝐺 ) ) |
| 46 | 2 3 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ∧ 𝑐 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ( +g ‘ 𝐺 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝐺 ) ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) ) ) |
| 47 | 30 35 40 45 46 | syl13anc | ⊢ ( ( ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑎 ∈ 𝑅 ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈 ) ) → ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ( +g ‘ 𝐺 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝐺 ) ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) ) ) |
| 48 | 47 | eqeq2d | ⊢ ( ( ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑎 ∈ 𝑅 ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈 ) ) → ( 𝑥 = ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ( +g ‘ 𝐺 ) 𝑐 ) ↔ 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) ) ) ) |
| 49 | 48 | 2rexbidva | ⊢ ( ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑎 ∈ 𝑅 ) → ( ∃ 𝑏 ∈ 𝑇 ∃ 𝑐 ∈ 𝑈 𝑥 = ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ( +g ‘ 𝐺 ) 𝑐 ) ↔ ∃ 𝑏 ∈ 𝑇 ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) ) ) ) |
| 50 | 27 49 | bitr4d | ⊢ ( ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑎 ∈ 𝑅 ) → ( ∃ 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑧 ) ↔ ∃ 𝑏 ∈ 𝑇 ∃ 𝑐 ∈ 𝑈 𝑥 = ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ( +g ‘ 𝐺 ) 𝑐 ) ) ) |
| 51 | 50 | rexbidva | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ∃ 𝑎 ∈ 𝑅 ∃ 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑧 ) ↔ ∃ 𝑎 ∈ 𝑅 ∃ 𝑏 ∈ 𝑇 ∃ 𝑐 ∈ 𝑈 𝑥 = ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ( +g ‘ 𝐺 ) 𝑐 ) ) ) |
| 52 | 15 51 | bitr4d | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ∃ 𝑦 ∈ ( 𝑅 ⊕ 𝑇 ) ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑐 ) ↔ ∃ 𝑎 ∈ 𝑅 ∃ 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 53 | 29 | grpmndd | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐺 ∈ Mnd ) |
| 54 | 2 1 | lsmssv | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑅 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑅 ⊕ 𝑇 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 55 | 53 32 37 54 | syl3anc | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑅 ⊕ 𝑇 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 56 | 2 3 1 | lsmelvalx | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑅 ⊕ 𝑇 ) ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ ( ( 𝑅 ⊕ 𝑇 ) ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ ( 𝑅 ⊕ 𝑇 ) ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑐 ) ) ) |
| 57 | 29 55 42 56 | syl3anc | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ ( ( 𝑅 ⊕ 𝑇 ) ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ ( 𝑅 ⊕ 𝑇 ) ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑐 ) ) ) |
| 58 | 2 1 | lsmssv | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑇 ⊕ 𝑈 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 59 | 53 37 42 58 | syl3anc | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑇 ⊕ 𝑈 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 60 | 2 3 1 | lsmelvalx | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑅 ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝑇 ⊕ 𝑈 ) ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ ( 𝑅 ⊕ ( 𝑇 ⊕ 𝑈 ) ) ↔ ∃ 𝑎 ∈ 𝑅 ∃ 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 61 | 29 32 59 60 | syl3anc | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ ( 𝑅 ⊕ ( 𝑇 ⊕ 𝑈 ) ) ↔ ∃ 𝑎 ∈ 𝑅 ∃ 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 62 | 52 57 61 | 3bitr4d | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ ( ( 𝑅 ⊕ 𝑇 ) ⊕ 𝑈 ) ↔ 𝑥 ∈ ( 𝑅 ⊕ ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 63 | 62 | eqrdv | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑅 ⊕ 𝑇 ) ⊕ 𝑈 ) = ( 𝑅 ⊕ ( 𝑇 ⊕ 𝑈 ) ) ) |