This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum is associative. (Contributed by NM, 2-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsmub1.p | |- .(+) = ( LSSum ` G ) |
|
| Assertion | lsmass | |- ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( R .(+) T ) .(+) U ) = ( R .(+) ( T .(+) U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmub1.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 3 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 4 | 2 3 1 | lsmval | |- ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) ) -> ( R .(+) T ) = ran ( a e. R , b e. T |-> ( a ( +g ` G ) b ) ) ) |
| 5 | 4 | 3adant3 | |- ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( R .(+) T ) = ran ( a e. R , b e. T |-> ( a ( +g ` G ) b ) ) ) |
| 6 | 5 | rexeqdv | |- ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( E. y e. ( R .(+) T ) E. c e. U x = ( y ( +g ` G ) c ) <-> E. y e. ran ( a e. R , b e. T |-> ( a ( +g ` G ) b ) ) E. c e. U x = ( y ( +g ` G ) c ) ) ) |
| 7 | ovex | |- ( a ( +g ` G ) b ) e. _V |
|
| 8 | 7 | rgen2w | |- A. a e. R A. b e. T ( a ( +g ` G ) b ) e. _V |
| 9 | eqid | |- ( a e. R , b e. T |-> ( a ( +g ` G ) b ) ) = ( a e. R , b e. T |-> ( a ( +g ` G ) b ) ) |
|
| 10 | oveq1 | |- ( y = ( a ( +g ` G ) b ) -> ( y ( +g ` G ) c ) = ( ( a ( +g ` G ) b ) ( +g ` G ) c ) ) |
|
| 11 | 10 | eqeq2d | |- ( y = ( a ( +g ` G ) b ) -> ( x = ( y ( +g ` G ) c ) <-> x = ( ( a ( +g ` G ) b ) ( +g ` G ) c ) ) ) |
| 12 | 11 | rexbidv | |- ( y = ( a ( +g ` G ) b ) -> ( E. c e. U x = ( y ( +g ` G ) c ) <-> E. c e. U x = ( ( a ( +g ` G ) b ) ( +g ` G ) c ) ) ) |
| 13 | 9 12 | rexrnmpo | |- ( A. a e. R A. b e. T ( a ( +g ` G ) b ) e. _V -> ( E. y e. ran ( a e. R , b e. T |-> ( a ( +g ` G ) b ) ) E. c e. U x = ( y ( +g ` G ) c ) <-> E. a e. R E. b e. T E. c e. U x = ( ( a ( +g ` G ) b ) ( +g ` G ) c ) ) ) |
| 14 | 8 13 | ax-mp | |- ( E. y e. ran ( a e. R , b e. T |-> ( a ( +g ` G ) b ) ) E. c e. U x = ( y ( +g ` G ) c ) <-> E. a e. R E. b e. T E. c e. U x = ( ( a ( +g ` G ) b ) ( +g ` G ) c ) ) |
| 15 | 6 14 | bitrdi | |- ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( E. y e. ( R .(+) T ) E. c e. U x = ( y ( +g ` G ) c ) <-> E. a e. R E. b e. T E. c e. U x = ( ( a ( +g ` G ) b ) ( +g ` G ) c ) ) ) |
| 16 | 2 3 1 | lsmval | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T .(+) U ) = ran ( b e. T , c e. U |-> ( b ( +g ` G ) c ) ) ) |
| 17 | 16 | 3adant1 | |- ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T .(+) U ) = ran ( b e. T , c e. U |-> ( b ( +g ` G ) c ) ) ) |
| 18 | 17 | rexeqdv | |- ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( E. z e. ( T .(+) U ) x = ( a ( +g ` G ) z ) <-> E. z e. ran ( b e. T , c e. U |-> ( b ( +g ` G ) c ) ) x = ( a ( +g ` G ) z ) ) ) |
| 19 | ovex | |- ( b ( +g ` G ) c ) e. _V |
|
| 20 | 19 | rgen2w | |- A. b e. T A. c e. U ( b ( +g ` G ) c ) e. _V |
| 21 | eqid | |- ( b e. T , c e. U |-> ( b ( +g ` G ) c ) ) = ( b e. T , c e. U |-> ( b ( +g ` G ) c ) ) |
|
| 22 | oveq2 | |- ( z = ( b ( +g ` G ) c ) -> ( a ( +g ` G ) z ) = ( a ( +g ` G ) ( b ( +g ` G ) c ) ) ) |
|
| 23 | 22 | eqeq2d | |- ( z = ( b ( +g ` G ) c ) -> ( x = ( a ( +g ` G ) z ) <-> x = ( a ( +g ` G ) ( b ( +g ` G ) c ) ) ) ) |
| 24 | 21 23 | rexrnmpo | |- ( A. b e. T A. c e. U ( b ( +g ` G ) c ) e. _V -> ( E. z e. ran ( b e. T , c e. U |-> ( b ( +g ` G ) c ) ) x = ( a ( +g ` G ) z ) <-> E. b e. T E. c e. U x = ( a ( +g ` G ) ( b ( +g ` G ) c ) ) ) ) |
| 25 | 20 24 | ax-mp | |- ( E. z e. ran ( b e. T , c e. U |-> ( b ( +g ` G ) c ) ) x = ( a ( +g ` G ) z ) <-> E. b e. T E. c e. U x = ( a ( +g ` G ) ( b ( +g ` G ) c ) ) ) |
| 26 | 18 25 | bitrdi | |- ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( E. z e. ( T .(+) U ) x = ( a ( +g ` G ) z ) <-> E. b e. T E. c e. U x = ( a ( +g ` G ) ( b ( +g ` G ) c ) ) ) ) |
| 27 | 26 | adantr | |- ( ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ a e. R ) -> ( E. z e. ( T .(+) U ) x = ( a ( +g ` G ) z ) <-> E. b e. T E. c e. U x = ( a ( +g ` G ) ( b ( +g ` G ) c ) ) ) ) |
| 28 | subgrcl | |- ( R e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 29 | 28 | 3ad2ant1 | |- ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> G e. Grp ) |
| 30 | 29 | ad2antrr | |- ( ( ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ a e. R ) /\ ( b e. T /\ c e. U ) ) -> G e. Grp ) |
| 31 | 2 | subgss | |- ( R e. ( SubGrp ` G ) -> R C_ ( Base ` G ) ) |
| 32 | 31 | 3ad2ant1 | |- ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> R C_ ( Base ` G ) ) |
| 33 | 32 | ad2antrr | |- ( ( ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ a e. R ) /\ ( b e. T /\ c e. U ) ) -> R C_ ( Base ` G ) ) |
| 34 | simplr | |- ( ( ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ a e. R ) /\ ( b e. T /\ c e. U ) ) -> a e. R ) |
|
| 35 | 33 34 | sseldd | |- ( ( ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ a e. R ) /\ ( b e. T /\ c e. U ) ) -> a e. ( Base ` G ) ) |
| 36 | 2 | subgss | |- ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) ) |
| 37 | 36 | 3ad2ant2 | |- ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> T C_ ( Base ` G ) ) |
| 38 | 37 | ad2antrr | |- ( ( ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ a e. R ) /\ ( b e. T /\ c e. U ) ) -> T C_ ( Base ` G ) ) |
| 39 | simprl | |- ( ( ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ a e. R ) /\ ( b e. T /\ c e. U ) ) -> b e. T ) |
|
| 40 | 38 39 | sseldd | |- ( ( ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ a e. R ) /\ ( b e. T /\ c e. U ) ) -> b e. ( Base ` G ) ) |
| 41 | 2 | subgss | |- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
| 42 | 41 | 3ad2ant3 | |- ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> U C_ ( Base ` G ) ) |
| 43 | 42 | ad2antrr | |- ( ( ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ a e. R ) /\ ( b e. T /\ c e. U ) ) -> U C_ ( Base ` G ) ) |
| 44 | simprr | |- ( ( ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ a e. R ) /\ ( b e. T /\ c e. U ) ) -> c e. U ) |
|
| 45 | 43 44 | sseldd | |- ( ( ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ a e. R ) /\ ( b e. T /\ c e. U ) ) -> c e. ( Base ` G ) ) |
| 46 | 2 3 | grpass | |- ( ( G e. Grp /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) /\ c e. ( Base ` G ) ) ) -> ( ( a ( +g ` G ) b ) ( +g ` G ) c ) = ( a ( +g ` G ) ( b ( +g ` G ) c ) ) ) |
| 47 | 30 35 40 45 46 | syl13anc | |- ( ( ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ a e. R ) /\ ( b e. T /\ c e. U ) ) -> ( ( a ( +g ` G ) b ) ( +g ` G ) c ) = ( a ( +g ` G ) ( b ( +g ` G ) c ) ) ) |
| 48 | 47 | eqeq2d | |- ( ( ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ a e. R ) /\ ( b e. T /\ c e. U ) ) -> ( x = ( ( a ( +g ` G ) b ) ( +g ` G ) c ) <-> x = ( a ( +g ` G ) ( b ( +g ` G ) c ) ) ) ) |
| 49 | 48 | 2rexbidva | |- ( ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ a e. R ) -> ( E. b e. T E. c e. U x = ( ( a ( +g ` G ) b ) ( +g ` G ) c ) <-> E. b e. T E. c e. U x = ( a ( +g ` G ) ( b ( +g ` G ) c ) ) ) ) |
| 50 | 27 49 | bitr4d | |- ( ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ a e. R ) -> ( E. z e. ( T .(+) U ) x = ( a ( +g ` G ) z ) <-> E. b e. T E. c e. U x = ( ( a ( +g ` G ) b ) ( +g ` G ) c ) ) ) |
| 51 | 50 | rexbidva | |- ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( E. a e. R E. z e. ( T .(+) U ) x = ( a ( +g ` G ) z ) <-> E. a e. R E. b e. T E. c e. U x = ( ( a ( +g ` G ) b ) ( +g ` G ) c ) ) ) |
| 52 | 15 51 | bitr4d | |- ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( E. y e. ( R .(+) T ) E. c e. U x = ( y ( +g ` G ) c ) <-> E. a e. R E. z e. ( T .(+) U ) x = ( a ( +g ` G ) z ) ) ) |
| 53 | 29 | grpmndd | |- ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> G e. Mnd ) |
| 54 | 2 1 | lsmssv | |- ( ( G e. Mnd /\ R C_ ( Base ` G ) /\ T C_ ( Base ` G ) ) -> ( R .(+) T ) C_ ( Base ` G ) ) |
| 55 | 53 32 37 54 | syl3anc | |- ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( R .(+) T ) C_ ( Base ` G ) ) |
| 56 | 2 3 1 | lsmelvalx | |- ( ( G e. Grp /\ ( R .(+) T ) C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) -> ( x e. ( ( R .(+) T ) .(+) U ) <-> E. y e. ( R .(+) T ) E. c e. U x = ( y ( +g ` G ) c ) ) ) |
| 57 | 29 55 42 56 | syl3anc | |- ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( x e. ( ( R .(+) T ) .(+) U ) <-> E. y e. ( R .(+) T ) E. c e. U x = ( y ( +g ` G ) c ) ) ) |
| 58 | 2 1 | lsmssv | |- ( ( G e. Mnd /\ T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) -> ( T .(+) U ) C_ ( Base ` G ) ) |
| 59 | 53 37 42 58 | syl3anc | |- ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T .(+) U ) C_ ( Base ` G ) ) |
| 60 | 2 3 1 | lsmelvalx | |- ( ( G e. Grp /\ R C_ ( Base ` G ) /\ ( T .(+) U ) C_ ( Base ` G ) ) -> ( x e. ( R .(+) ( T .(+) U ) ) <-> E. a e. R E. z e. ( T .(+) U ) x = ( a ( +g ` G ) z ) ) ) |
| 61 | 29 32 59 60 | syl3anc | |- ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( x e. ( R .(+) ( T .(+) U ) ) <-> E. a e. R E. z e. ( T .(+) U ) x = ( a ( +g ` G ) z ) ) ) |
| 62 | 52 57 61 | 3bitr4d | |- ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( x e. ( ( R .(+) T ) .(+) U ) <-> x e. ( R .(+) ( T .(+) U ) ) ) ) |
| 63 | 62 | eqrdv | |- ( ( R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( R .(+) T ) .(+) U ) = ( R .(+) ( T .(+) U ) ) ) |