This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum is idempotent for monoids. This corresponds to the observation in Lang p. 6. (Contributed by AV, 27-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndlsmidm.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| mndlsmidm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | mndlsmidm | ⊢ ( 𝐺 ∈ Mnd → ( 𝐵 ⊕ 𝐵 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndlsmidm.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | mndlsmidm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | 2 | submid | ⊢ ( 𝐺 ∈ Mnd → 𝐵 ∈ ( SubMnd ‘ 𝐺 ) ) |
| 4 | 1 | smndlsmidm | ⊢ ( 𝐵 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝐵 ⊕ 𝐵 ) = 𝐵 ) |
| 5 | 3 4 | syl | ⊢ ( 𝐺 ∈ Mnd → ( 𝐵 ⊕ 𝐵 ) = 𝐵 ) |