This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real part of a complex number representation. Definition 10-3.1 of Gleason p. 132. (Contributed by NM, 12-May-2005) (Revised by Mario Carneiro, 7-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | crim | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | ax-icn | ⊢ i ∈ ℂ | |
| 3 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 4 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · 𝐵 ) ∈ ℂ ) | |
| 5 | 2 3 4 | sylancr | ⊢ ( 𝐵 ∈ ℝ → ( i · 𝐵 ) ∈ ℂ ) |
| 6 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( i · 𝐵 ) ∈ ℂ ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ ) | |
| 7 | 1 5 6 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ ) |
| 8 | imval | ⊢ ( ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ → ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = ( ℜ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) / i ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = ( ℜ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) / i ) ) ) |
| 10 | 2 4 | mpan | ⊢ ( 𝐵 ∈ ℂ → ( i · 𝐵 ) ∈ ℂ ) |
| 11 | ine0 | ⊢ i ≠ 0 | |
| 12 | divdir | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( i · 𝐵 ) ∈ ℂ ∧ ( i ∈ ℂ ∧ i ≠ 0 ) ) → ( ( 𝐴 + ( i · 𝐵 ) ) / i ) = ( ( 𝐴 / i ) + ( ( i · 𝐵 ) / i ) ) ) | |
| 13 | 12 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( i · 𝐵 ) ∈ ℂ ) ∧ ( i ∈ ℂ ∧ i ≠ 0 ) ) → ( ( 𝐴 + ( i · 𝐵 ) ) / i ) = ( ( 𝐴 / i ) + ( ( i · 𝐵 ) / i ) ) ) |
| 14 | 2 11 13 | mpanr12 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( i · 𝐵 ) ∈ ℂ ) → ( ( 𝐴 + ( i · 𝐵 ) ) / i ) = ( ( 𝐴 / i ) + ( ( i · 𝐵 ) / i ) ) ) |
| 15 | 10 14 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + ( i · 𝐵 ) ) / i ) = ( ( 𝐴 / i ) + ( ( i · 𝐵 ) / i ) ) ) |
| 16 | divrec2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( 𝐴 / i ) = ( ( 1 / i ) · 𝐴 ) ) | |
| 17 | 2 11 16 | mp3an23 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / i ) = ( ( 1 / i ) · 𝐴 ) ) |
| 18 | irec | ⊢ ( 1 / i ) = - i | |
| 19 | 18 | oveq1i | ⊢ ( ( 1 / i ) · 𝐴 ) = ( - i · 𝐴 ) |
| 20 | 19 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 / i ) · 𝐴 ) = ( - i · 𝐴 ) ) |
| 21 | mulneg12 | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · 𝐴 ) = ( i · - 𝐴 ) ) | |
| 22 | 2 21 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( - i · 𝐴 ) = ( i · - 𝐴 ) ) |
| 23 | 17 20 22 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / i ) = ( i · - 𝐴 ) ) |
| 24 | divcan3 | ⊢ ( ( 𝐵 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( ( i · 𝐵 ) / i ) = 𝐵 ) | |
| 25 | 2 11 24 | mp3an23 | ⊢ ( 𝐵 ∈ ℂ → ( ( i · 𝐵 ) / i ) = 𝐵 ) |
| 26 | 23 25 | oveqan12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 / i ) + ( ( i · 𝐵 ) / i ) ) = ( ( i · - 𝐴 ) + 𝐵 ) ) |
| 27 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 28 | mulcl | ⊢ ( ( i ∈ ℂ ∧ - 𝐴 ∈ ℂ ) → ( i · - 𝐴 ) ∈ ℂ ) | |
| 29 | 2 27 28 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( i · - 𝐴 ) ∈ ℂ ) |
| 30 | addcom | ⊢ ( ( ( i · - 𝐴 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · - 𝐴 ) + 𝐵 ) = ( 𝐵 + ( i · - 𝐴 ) ) ) | |
| 31 | 29 30 | sylan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · - 𝐴 ) + 𝐵 ) = ( 𝐵 + ( i · - 𝐴 ) ) ) |
| 32 | 15 26 31 | 3eqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 + ( i · - 𝐴 ) ) = ( ( 𝐴 + ( i · 𝐵 ) ) / i ) ) |
| 33 | 1 3 32 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 + ( i · - 𝐴 ) ) = ( ( 𝐴 + ( i · 𝐵 ) ) / i ) ) |
| 34 | 33 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℜ ‘ ( 𝐵 + ( i · - 𝐴 ) ) ) = ( ℜ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) / i ) ) ) |
| 35 | id | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ ) | |
| 36 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 37 | crre | ⊢ ( ( 𝐵 ∈ ℝ ∧ - 𝐴 ∈ ℝ ) → ( ℜ ‘ ( 𝐵 + ( i · - 𝐴 ) ) ) = 𝐵 ) | |
| 38 | 35 36 37 | syl2anr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℜ ‘ ( 𝐵 + ( i · - 𝐴 ) ) ) = 𝐵 ) |
| 39 | 9 34 38 | 3eqtr2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = 𝐵 ) |