This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The natural logarithm of _i . (Contributed by Scott Fenton, 13-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logi | ⊢ ( log ‘ i ) = ( i · ( π / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efhalfpi | ⊢ ( exp ‘ ( i · ( π / 2 ) ) ) = i | |
| 2 | ax-icn | ⊢ i ∈ ℂ | |
| 3 | ine0 | ⊢ i ≠ 0 | |
| 4 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 5 | 4 | recni | ⊢ ( π / 2 ) ∈ ℂ |
| 6 | 2 5 | mulcli | ⊢ ( i · ( π / 2 ) ) ∈ ℂ |
| 7 | pipos | ⊢ 0 < π | |
| 8 | pire | ⊢ π ∈ ℝ | |
| 9 | lt0neg2 | ⊢ ( π ∈ ℝ → ( 0 < π ↔ - π < 0 ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( 0 < π ↔ - π < 0 ) |
| 11 | 7 10 | mpbi | ⊢ - π < 0 |
| 12 | halfpos2 | ⊢ ( π ∈ ℝ → ( 0 < π ↔ 0 < ( π / 2 ) ) ) | |
| 13 | 8 12 | ax-mp | ⊢ ( 0 < π ↔ 0 < ( π / 2 ) ) |
| 14 | 7 13 | mpbi | ⊢ 0 < ( π / 2 ) |
| 15 | 8 | renegcli | ⊢ - π ∈ ℝ |
| 16 | 0re | ⊢ 0 ∈ ℝ | |
| 17 | 15 16 4 | lttri | ⊢ ( ( - π < 0 ∧ 0 < ( π / 2 ) ) → - π < ( π / 2 ) ) |
| 18 | 11 14 17 | mp2an | ⊢ - π < ( π / 2 ) |
| 19 | reim | ⊢ ( ( π / 2 ) ∈ ℂ → ( ℜ ‘ ( π / 2 ) ) = ( ℑ ‘ ( i · ( π / 2 ) ) ) ) | |
| 20 | 5 19 | ax-mp | ⊢ ( ℜ ‘ ( π / 2 ) ) = ( ℑ ‘ ( i · ( π / 2 ) ) ) |
| 21 | rere | ⊢ ( ( π / 2 ) ∈ ℝ → ( ℜ ‘ ( π / 2 ) ) = ( π / 2 ) ) | |
| 22 | 4 21 | ax-mp | ⊢ ( ℜ ‘ ( π / 2 ) ) = ( π / 2 ) |
| 23 | 20 22 | eqtr3i | ⊢ ( ℑ ‘ ( i · ( π / 2 ) ) ) = ( π / 2 ) |
| 24 | 18 23 | breqtrri | ⊢ - π < ( ℑ ‘ ( i · ( π / 2 ) ) ) |
| 25 | 8 | a1i | ⊢ ( ⊤ → π ∈ ℝ ) |
| 26 | 25 25 | ltaddposd | ⊢ ( ⊤ → ( 0 < π ↔ π < ( π + π ) ) ) |
| 27 | 7 26 | mpbii | ⊢ ( ⊤ → π < ( π + π ) ) |
| 28 | picn | ⊢ π ∈ ℂ | |
| 29 | 28 | times2i | ⊢ ( π · 2 ) = ( π + π ) |
| 30 | 27 29 | breqtrrdi | ⊢ ( ⊤ → π < ( π · 2 ) ) |
| 31 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 32 | 31 | a1i | ⊢ ( ⊤ → 2 ∈ ℝ+ ) |
| 33 | 25 25 32 | ltdivmul2d | ⊢ ( ⊤ → ( ( π / 2 ) < π ↔ π < ( π · 2 ) ) ) |
| 34 | 30 33 | mpbird | ⊢ ( ⊤ → ( π / 2 ) < π ) |
| 35 | 34 | mptru | ⊢ ( π / 2 ) < π |
| 36 | 4 8 35 | ltleii | ⊢ ( π / 2 ) ≤ π |
| 37 | 23 36 | eqbrtri | ⊢ ( ℑ ‘ ( i · ( π / 2 ) ) ) ≤ π |
| 38 | ellogrn | ⊢ ( ( i · ( π / 2 ) ) ∈ ran log ↔ ( ( i · ( π / 2 ) ) ∈ ℂ ∧ - π < ( ℑ ‘ ( i · ( π / 2 ) ) ) ∧ ( ℑ ‘ ( i · ( π / 2 ) ) ) ≤ π ) ) | |
| 39 | 6 24 37 38 | mpbir3an | ⊢ ( i · ( π / 2 ) ) ∈ ran log |
| 40 | logeftb | ⊢ ( ( i ∈ ℂ ∧ i ≠ 0 ∧ ( i · ( π / 2 ) ) ∈ ran log ) → ( ( log ‘ i ) = ( i · ( π / 2 ) ) ↔ ( exp ‘ ( i · ( π / 2 ) ) ) = i ) ) | |
| 41 | 2 3 39 40 | mp3an | ⊢ ( ( log ‘ i ) = ( i · ( π / 2 ) ) ↔ ( exp ‘ ( i · ( π / 2 ) ) ) = i ) |
| 42 | 1 41 | mpbir | ⊢ ( log ‘ i ) = ( i · ( π / 2 ) ) |