This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of a complex conjugate. Equation 3 of Gleason p. 308. (Contributed by NM, 29-Apr-2005) (Revised by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efcj | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ∗ ‘ 𝐴 ) ) = ( ∗ ‘ ( exp ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjcl | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) | |
| 2 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 3 | 2 | efcvg | ⊢ ( ( ∗ ‘ 𝐴 ) ∈ ℂ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ⇝ ( exp ‘ ( ∗ ‘ 𝐴 ) ) ) |
| 4 | 1 3 | syl | ⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ⇝ ( exp ‘ ( ∗ ‘ 𝐴 ) ) ) |
| 5 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 6 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 7 | 6 | efcvg | ⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ⇝ ( exp ‘ 𝐴 ) ) |
| 8 | seqex | ⊢ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ∈ V | |
| 9 | 8 | a1i | ⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ∈ V ) |
| 10 | 0zd | ⊢ ( 𝐴 ∈ ℂ → 0 ∈ ℤ ) | |
| 11 | 6 | eftval | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 13 | eftcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) | |
| 14 | 12 13 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 15 | 5 10 14 | serf | ⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) : ℕ0 ⟶ ℂ ) |
| 16 | 15 | ffvelcdmda | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 17 | addcl | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 𝑘 + 𝑚 ) ∈ ℂ ) | |
| 18 | 17 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ) ) → ( 𝑘 + 𝑚 ) ∈ ℂ ) |
| 19 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) | |
| 20 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... 𝑗 ) → 𝑘 ∈ ℕ0 ) | |
| 21 | 19 20 14 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑗 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 22 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℕ0 ) | |
| 23 | 22 5 | eleqtrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ( ℤ≥ ‘ 0 ) ) |
| 24 | cjadd | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ∗ ‘ ( 𝑘 + 𝑚 ) ) = ( ( ∗ ‘ 𝑘 ) + ( ∗ ‘ 𝑚 ) ) ) | |
| 25 | 24 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ) ) → ( ∗ ‘ ( 𝑘 + 𝑚 ) ) = ( ( ∗ ‘ 𝑘 ) + ( ∗ ‘ 𝑚 ) ) ) |
| 26 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) | |
| 27 | faccl | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) | |
| 28 | 27 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 29 | 28 | nncnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 30 | 28 | nnne0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ≠ 0 ) |
| 31 | 26 29 30 | cjdivd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ∗ ‘ ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ∗ ‘ ( 𝐴 ↑ 𝑘 ) ) / ( ∗ ‘ ( ! ‘ 𝑘 ) ) ) ) |
| 32 | cjexp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ∗ ‘ ( 𝐴 ↑ 𝑘 ) ) = ( ( ∗ ‘ 𝐴 ) ↑ 𝑘 ) ) | |
| 33 | 28 | nnred | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℝ ) |
| 34 | 33 | cjred | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ∗ ‘ ( ! ‘ 𝑘 ) ) = ( ! ‘ 𝑘 ) ) |
| 35 | 32 34 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( ∗ ‘ ( 𝐴 ↑ 𝑘 ) ) / ( ∗ ‘ ( ! ‘ 𝑘 ) ) ) = ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 36 | 31 35 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ∗ ‘ ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 37 | 12 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ∗ ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) = ( ∗ ‘ ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 38 | 2 | eftval | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 39 | 38 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 40 | 36 37 39 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ∗ ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) = ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) |
| 41 | 19 20 40 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑗 ) ) → ( ∗ ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) = ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) |
| 42 | 18 21 23 25 41 | seqhomo | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( ∗ ‘ ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ) = ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ) |
| 43 | 42 | eqcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) = ( ∗ ‘ ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ) ) |
| 44 | 5 7 9 10 16 43 | climcj | ⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ⇝ ( ∗ ‘ ( exp ‘ 𝐴 ) ) ) |
| 45 | climuni | ⊢ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ⇝ ( exp ‘ ( ∗ ‘ 𝐴 ) ) ∧ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ⇝ ( ∗ ‘ ( exp ‘ 𝐴 ) ) ) → ( exp ‘ ( ∗ ‘ 𝐴 ) ) = ( ∗ ‘ ( exp ‘ 𝐴 ) ) ) | |
| 46 | 4 44 45 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ∗ ‘ 𝐴 ) ) = ( ∗ ‘ ( exp ‘ 𝐴 ) ) ) |