This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for log2ub . (Contributed by Mario Carneiro, 17-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | log2ublem2.1 | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · Σ 𝑛 ∈ ( 0 ... 𝐾 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ≤ ( 2 · 𝐵 ) | |
| log2ublem2.2 | ⊢ 𝐵 ∈ ℕ0 | ||
| log2ublem2.3 | ⊢ 𝐹 ∈ ℕ0 | ||
| log2ublem2.4 | ⊢ 𝑁 ∈ ℕ0 | ||
| log2ublem2.5 | ⊢ ( 𝑁 − 1 ) = 𝐾 | ||
| log2ublem2.6 | ⊢ ( 𝐵 + 𝐹 ) = 𝐺 | ||
| log2ublem2.7 | ⊢ 𝑀 ∈ ℕ0 | ||
| log2ublem2.8 | ⊢ ( 𝑀 + 𝑁 ) = 3 | ||
| log2ublem2.9 | ⊢ ( ( 5 · 7 ) · ( 9 ↑ 𝑀 ) ) = ( ( ( 2 · 𝑁 ) + 1 ) · 𝐹 ) | ||
| Assertion | log2ublem2 | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · Σ 𝑛 ∈ ( 0 ... 𝑁 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ≤ ( 2 · 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | log2ublem2.1 | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · Σ 𝑛 ∈ ( 0 ... 𝐾 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ≤ ( 2 · 𝐵 ) | |
| 2 | log2ublem2.2 | ⊢ 𝐵 ∈ ℕ0 | |
| 3 | log2ublem2.3 | ⊢ 𝐹 ∈ ℕ0 | |
| 4 | log2ublem2.4 | ⊢ 𝑁 ∈ ℕ0 | |
| 5 | log2ublem2.5 | ⊢ ( 𝑁 − 1 ) = 𝐾 | |
| 6 | log2ublem2.6 | ⊢ ( 𝐵 + 𝐹 ) = 𝐺 | |
| 7 | log2ublem2.7 | ⊢ 𝑀 ∈ ℕ0 | |
| 8 | log2ublem2.8 | ⊢ ( 𝑀 + 𝑁 ) = 3 | |
| 9 | log2ublem2.9 | ⊢ ( ( 5 · 7 ) · ( 9 ↑ 𝑀 ) ) = ( ( ( 2 · 𝑁 ) + 1 ) · 𝐹 ) | |
| 10 | fzfid | ⊢ ( ⊤ → ( 0 ... 𝐾 ) ∈ Fin ) | |
| 11 | elfznn0 | ⊢ ( 𝑛 ∈ ( 0 ... 𝐾 ) → 𝑛 ∈ ℕ0 ) | |
| 12 | 11 | adantl | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... 𝐾 ) ) → 𝑛 ∈ ℕ0 ) |
| 13 | 2re | ⊢ 2 ∈ ℝ | |
| 14 | 3nn | ⊢ 3 ∈ ℕ | |
| 15 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 16 | nn0mulcl | ⊢ ( ( 2 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) → ( 2 · 𝑛 ) ∈ ℕ0 ) | |
| 17 | 15 16 | mpan | ⊢ ( 𝑛 ∈ ℕ0 → ( 2 · 𝑛 ) ∈ ℕ0 ) |
| 18 | nn0p1nn | ⊢ ( ( 2 · 𝑛 ) ∈ ℕ0 → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) | |
| 19 | 17 18 | syl | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) |
| 20 | nnmulcl | ⊢ ( ( 3 ∈ ℕ ∧ ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) → ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℕ ) | |
| 21 | 14 19 20 | sylancr | ⊢ ( 𝑛 ∈ ℕ0 → ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℕ ) |
| 22 | 9nn | ⊢ 9 ∈ ℕ | |
| 23 | nnexpcl | ⊢ ( ( 9 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 9 ↑ 𝑛 ) ∈ ℕ ) | |
| 24 | 22 23 | mpan | ⊢ ( 𝑛 ∈ ℕ0 → ( 9 ↑ 𝑛 ) ∈ ℕ ) |
| 25 | 21 24 | nnmulcld | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ∈ ℕ ) |
| 26 | nndivre | ⊢ ( ( 2 ∈ ℝ ∧ ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ∈ ℕ ) → ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ∈ ℝ ) | |
| 27 | 13 25 26 | sylancr | ⊢ ( 𝑛 ∈ ℕ0 → ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 28 | 12 27 | syl | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... 𝐾 ) ) → ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 29 | 10 28 | fsumrecl | ⊢ ( ⊤ → Σ 𝑛 ∈ ( 0 ... 𝐾 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 30 | 29 | mptru | ⊢ Σ 𝑛 ∈ ( 0 ... 𝐾 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ∈ ℝ |
| 31 | 15 4 | nn0mulcli | ⊢ ( 2 · 𝑁 ) ∈ ℕ0 |
| 32 | nn0p1nn | ⊢ ( ( 2 · 𝑁 ) ∈ ℕ0 → ( ( 2 · 𝑁 ) + 1 ) ∈ ℕ ) | |
| 33 | 31 32 | ax-mp | ⊢ ( ( 2 · 𝑁 ) + 1 ) ∈ ℕ |
| 34 | 14 33 | nnmulcli | ⊢ ( 3 · ( ( 2 · 𝑁 ) + 1 ) ) ∈ ℕ |
| 35 | nnexpcl | ⊢ ( ( 9 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 9 ↑ 𝑁 ) ∈ ℕ ) | |
| 36 | 22 4 35 | mp2an | ⊢ ( 9 ↑ 𝑁 ) ∈ ℕ |
| 37 | 34 36 | nnmulcli | ⊢ ( ( 3 · ( ( 2 · 𝑁 ) + 1 ) ) · ( 9 ↑ 𝑁 ) ) ∈ ℕ |
| 38 | 15 2 | nn0mulcli | ⊢ ( 2 · 𝐵 ) ∈ ℕ0 |
| 39 | 15 3 | nn0mulcli | ⊢ ( 2 · 𝐹 ) ∈ ℕ0 |
| 40 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 41 | 4 40 | eleqtri | ⊢ 𝑁 ∈ ( ℤ≥ ‘ 0 ) |
| 42 | 41 | a1i | ⊢ ( ⊤ → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 43 | elfznn0 | ⊢ ( 𝑛 ∈ ( 0 ... 𝑁 ) → 𝑛 ∈ ℕ0 ) | |
| 44 | 43 | adantl | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) → 𝑛 ∈ ℕ0 ) |
| 45 | 27 | recnd | ⊢ ( 𝑛 ∈ ℕ0 → ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ∈ ℂ ) |
| 46 | 44 45 | syl | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) → ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ∈ ℂ ) |
| 47 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 2 · 𝑛 ) = ( 2 · 𝑁 ) ) | |
| 48 | 47 | oveq1d | ⊢ ( 𝑛 = 𝑁 → ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · 𝑁 ) + 1 ) ) |
| 49 | 48 | oveq2d | ⊢ ( 𝑛 = 𝑁 → ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) = ( 3 · ( ( 2 · 𝑁 ) + 1 ) ) ) |
| 50 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 9 ↑ 𝑛 ) = ( 9 ↑ 𝑁 ) ) | |
| 51 | 49 50 | oveq12d | ⊢ ( 𝑛 = 𝑁 → ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) = ( ( 3 · ( ( 2 · 𝑁 ) + 1 ) ) · ( 9 ↑ 𝑁 ) ) ) |
| 52 | 51 | oveq2d | ⊢ ( 𝑛 = 𝑁 → ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) = ( 2 / ( ( 3 · ( ( 2 · 𝑁 ) + 1 ) ) · ( 9 ↑ 𝑁 ) ) ) ) |
| 53 | 42 46 52 | fsumm1 | ⊢ ( ⊤ → Σ 𝑛 ∈ ( 0 ... 𝑁 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 2 / ( ( 3 · ( ( 2 · 𝑁 ) + 1 ) ) · ( 9 ↑ 𝑁 ) ) ) ) ) |
| 54 | 53 | mptru | ⊢ Σ 𝑛 ∈ ( 0 ... 𝑁 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 2 / ( ( 3 · ( ( 2 · 𝑁 ) + 1 ) ) · ( 9 ↑ 𝑁 ) ) ) ) |
| 55 | 5 | oveq2i | ⊢ ( 0 ... ( 𝑁 − 1 ) ) = ( 0 ... 𝐾 ) |
| 56 | 55 | sumeq1i | ⊢ Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) = Σ 𝑛 ∈ ( 0 ... 𝐾 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) |
| 57 | 56 | oveq1i | ⊢ ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 2 / ( ( 3 · ( ( 2 · 𝑁 ) + 1 ) ) · ( 9 ↑ 𝑁 ) ) ) ) = ( Σ 𝑛 ∈ ( 0 ... 𝐾 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 2 / ( ( 3 · ( ( 2 · 𝑁 ) + 1 ) ) · ( 9 ↑ 𝑁 ) ) ) ) |
| 58 | 54 57 | eqtri | ⊢ Σ 𝑛 ∈ ( 0 ... 𝑁 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 0 ... 𝐾 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 2 / ( ( 3 · ( ( 2 · 𝑁 ) + 1 ) ) · ( 9 ↑ 𝑁 ) ) ) ) |
| 59 | 2cn | ⊢ 2 ∈ ℂ | |
| 60 | 2 | nn0cni | ⊢ 𝐵 ∈ ℂ |
| 61 | 3 | nn0cni | ⊢ 𝐹 ∈ ℂ |
| 62 | 59 60 61 | adddii | ⊢ ( 2 · ( 𝐵 + 𝐹 ) ) = ( ( 2 · 𝐵 ) + ( 2 · 𝐹 ) ) |
| 63 | 6 | oveq2i | ⊢ ( 2 · ( 𝐵 + 𝐹 ) ) = ( 2 · 𝐺 ) |
| 64 | 62 63 | eqtr3i | ⊢ ( ( 2 · 𝐵 ) + ( 2 · 𝐹 ) ) = ( 2 · 𝐺 ) |
| 65 | 7nn | ⊢ 7 ∈ ℕ | |
| 66 | 65 | nnnn0i | ⊢ 7 ∈ ℕ0 |
| 67 | nnexpcl | ⊢ ( ( 3 ∈ ℕ ∧ 7 ∈ ℕ0 ) → ( 3 ↑ 7 ) ∈ ℕ ) | |
| 68 | 14 66 67 | mp2an | ⊢ ( 3 ↑ 7 ) ∈ ℕ |
| 69 | 5nn | ⊢ 5 ∈ ℕ | |
| 70 | 69 65 | nnmulcli | ⊢ ( 5 · 7 ) ∈ ℕ |
| 71 | 68 70 | nnmulcli | ⊢ ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ∈ ℕ |
| 72 | 71 | nnrei | ⊢ ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ∈ ℝ |
| 73 | 72 13 | remulcli | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 2 ) ∈ ℝ |
| 74 | 73 | leidi | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 2 ) ≤ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 2 ) |
| 75 | 14 | nnnn0i | ⊢ 3 ∈ ℕ0 |
| 76 | nnexpcl | ⊢ ( ( 9 ∈ ℕ ∧ 3 ∈ ℕ0 ) → ( 9 ↑ 3 ) ∈ ℕ ) | |
| 77 | 22 75 76 | mp2an | ⊢ ( 9 ↑ 3 ) ∈ ℕ |
| 78 | 77 | nncni | ⊢ ( 9 ↑ 3 ) ∈ ℂ |
| 79 | 70 | nncni | ⊢ ( 5 · 7 ) ∈ ℂ |
| 80 | 78 79 | mulcomi | ⊢ ( ( 9 ↑ 3 ) · ( 5 · 7 ) ) = ( ( 5 · 7 ) · ( 9 ↑ 3 ) ) |
| 81 | 7 | nn0cni | ⊢ 𝑀 ∈ ℂ |
| 82 | 4 | nn0cni | ⊢ 𝑁 ∈ ℂ |
| 83 | 81 82 | addcomi | ⊢ ( 𝑀 + 𝑁 ) = ( 𝑁 + 𝑀 ) |
| 84 | 8 83 | eqtr3i | ⊢ 3 = ( 𝑁 + 𝑀 ) |
| 85 | 84 | oveq2i | ⊢ ( 9 ↑ 3 ) = ( 9 ↑ ( 𝑁 + 𝑀 ) ) |
| 86 | 22 | nncni | ⊢ 9 ∈ ℂ |
| 87 | expadd | ⊢ ( ( 9 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 9 ↑ ( 𝑁 + 𝑀 ) ) = ( ( 9 ↑ 𝑁 ) · ( 9 ↑ 𝑀 ) ) ) | |
| 88 | 86 4 7 87 | mp3an | ⊢ ( 9 ↑ ( 𝑁 + 𝑀 ) ) = ( ( 9 ↑ 𝑁 ) · ( 9 ↑ 𝑀 ) ) |
| 89 | 85 88 | eqtri | ⊢ ( 9 ↑ 3 ) = ( ( 9 ↑ 𝑁 ) · ( 9 ↑ 𝑀 ) ) |
| 90 | 89 | oveq2i | ⊢ ( ( 5 · 7 ) · ( 9 ↑ 3 ) ) = ( ( 5 · 7 ) · ( ( 9 ↑ 𝑁 ) · ( 9 ↑ 𝑀 ) ) ) |
| 91 | 36 | nncni | ⊢ ( 9 ↑ 𝑁 ) ∈ ℂ |
| 92 | nnexpcl | ⊢ ( ( 9 ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) → ( 9 ↑ 𝑀 ) ∈ ℕ ) | |
| 93 | 22 7 92 | mp2an | ⊢ ( 9 ↑ 𝑀 ) ∈ ℕ |
| 94 | 93 | nncni | ⊢ ( 9 ↑ 𝑀 ) ∈ ℂ |
| 95 | 79 91 94 | mul12i | ⊢ ( ( 5 · 7 ) · ( ( 9 ↑ 𝑁 ) · ( 9 ↑ 𝑀 ) ) ) = ( ( 9 ↑ 𝑁 ) · ( ( 5 · 7 ) · ( 9 ↑ 𝑀 ) ) ) |
| 96 | 80 90 95 | 3eqtri | ⊢ ( ( 9 ↑ 3 ) · ( 5 · 7 ) ) = ( ( 9 ↑ 𝑁 ) · ( ( 5 · 7 ) · ( 9 ↑ 𝑀 ) ) ) |
| 97 | 9 | oveq2i | ⊢ ( ( 9 ↑ 𝑁 ) · ( ( 5 · 7 ) · ( 9 ↑ 𝑀 ) ) ) = ( ( 9 ↑ 𝑁 ) · ( ( ( 2 · 𝑁 ) + 1 ) · 𝐹 ) ) |
| 98 | 96 97 | eqtri | ⊢ ( ( 9 ↑ 3 ) · ( 5 · 7 ) ) = ( ( 9 ↑ 𝑁 ) · ( ( ( 2 · 𝑁 ) + 1 ) · 𝐹 ) ) |
| 99 | 98 | oveq2i | ⊢ ( 3 · ( ( 9 ↑ 3 ) · ( 5 · 7 ) ) ) = ( 3 · ( ( 9 ↑ 𝑁 ) · ( ( ( 2 · 𝑁 ) + 1 ) · 𝐹 ) ) ) |
| 100 | df-7 | ⊢ 7 = ( 6 + 1 ) | |
| 101 | 100 | oveq2i | ⊢ ( 3 ↑ 7 ) = ( 3 ↑ ( 6 + 1 ) ) |
| 102 | 3cn | ⊢ 3 ∈ ℂ | |
| 103 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 104 | expp1 | ⊢ ( ( 3 ∈ ℂ ∧ 6 ∈ ℕ0 ) → ( 3 ↑ ( 6 + 1 ) ) = ( ( 3 ↑ 6 ) · 3 ) ) | |
| 105 | 102 103 104 | mp2an | ⊢ ( 3 ↑ ( 6 + 1 ) ) = ( ( 3 ↑ 6 ) · 3 ) |
| 106 | expmul | ⊢ ( ( 3 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ) → ( 3 ↑ ( 2 · 3 ) ) = ( ( 3 ↑ 2 ) ↑ 3 ) ) | |
| 107 | 102 15 75 106 | mp3an | ⊢ ( 3 ↑ ( 2 · 3 ) ) = ( ( 3 ↑ 2 ) ↑ 3 ) |
| 108 | 59 102 | mulcomi | ⊢ ( 2 · 3 ) = ( 3 · 2 ) |
| 109 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
| 110 | 108 109 | eqtri | ⊢ ( 2 · 3 ) = 6 |
| 111 | 110 | oveq2i | ⊢ ( 3 ↑ ( 2 · 3 ) ) = ( 3 ↑ 6 ) |
| 112 | sq3 | ⊢ ( 3 ↑ 2 ) = 9 | |
| 113 | 112 | oveq1i | ⊢ ( ( 3 ↑ 2 ) ↑ 3 ) = ( 9 ↑ 3 ) |
| 114 | 107 111 113 | 3eqtr3i | ⊢ ( 3 ↑ 6 ) = ( 9 ↑ 3 ) |
| 115 | 114 | oveq1i | ⊢ ( ( 3 ↑ 6 ) · 3 ) = ( ( 9 ↑ 3 ) · 3 ) |
| 116 | 105 115 | eqtri | ⊢ ( 3 ↑ ( 6 + 1 ) ) = ( ( 9 ↑ 3 ) · 3 ) |
| 117 | 78 102 | mulcomi | ⊢ ( ( 9 ↑ 3 ) · 3 ) = ( 3 · ( 9 ↑ 3 ) ) |
| 118 | 101 116 117 | 3eqtri | ⊢ ( 3 ↑ 7 ) = ( 3 · ( 9 ↑ 3 ) ) |
| 119 | 118 | oveq1i | ⊢ ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) = ( ( 3 · ( 9 ↑ 3 ) ) · ( 5 · 7 ) ) |
| 120 | 102 78 79 | mulassi | ⊢ ( ( 3 · ( 9 ↑ 3 ) ) · ( 5 · 7 ) ) = ( 3 · ( ( 9 ↑ 3 ) · ( 5 · 7 ) ) ) |
| 121 | 119 120 | eqtri | ⊢ ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) = ( 3 · ( ( 9 ↑ 3 ) · ( 5 · 7 ) ) ) |
| 122 | 33 | nncni | ⊢ ( ( 2 · 𝑁 ) + 1 ) ∈ ℂ |
| 123 | 102 122 91 | mul32i | ⊢ ( ( 3 · ( ( 2 · 𝑁 ) + 1 ) ) · ( 9 ↑ 𝑁 ) ) = ( ( 3 · ( 9 ↑ 𝑁 ) ) · ( ( 2 · 𝑁 ) + 1 ) ) |
| 124 | 123 | oveq1i | ⊢ ( ( ( 3 · ( ( 2 · 𝑁 ) + 1 ) ) · ( 9 ↑ 𝑁 ) ) · 𝐹 ) = ( ( ( 3 · ( 9 ↑ 𝑁 ) ) · ( ( 2 · 𝑁 ) + 1 ) ) · 𝐹 ) |
| 125 | 102 91 | mulcli | ⊢ ( 3 · ( 9 ↑ 𝑁 ) ) ∈ ℂ |
| 126 | 125 122 61 | mulassi | ⊢ ( ( ( 3 · ( 9 ↑ 𝑁 ) ) · ( ( 2 · 𝑁 ) + 1 ) ) · 𝐹 ) = ( ( 3 · ( 9 ↑ 𝑁 ) ) · ( ( ( 2 · 𝑁 ) + 1 ) · 𝐹 ) ) |
| 127 | 122 61 | mulcli | ⊢ ( ( ( 2 · 𝑁 ) + 1 ) · 𝐹 ) ∈ ℂ |
| 128 | 102 91 127 | mulassi | ⊢ ( ( 3 · ( 9 ↑ 𝑁 ) ) · ( ( ( 2 · 𝑁 ) + 1 ) · 𝐹 ) ) = ( 3 · ( ( 9 ↑ 𝑁 ) · ( ( ( 2 · 𝑁 ) + 1 ) · 𝐹 ) ) ) |
| 129 | 124 126 128 | 3eqtri | ⊢ ( ( ( 3 · ( ( 2 · 𝑁 ) + 1 ) ) · ( 9 ↑ 𝑁 ) ) · 𝐹 ) = ( 3 · ( ( 9 ↑ 𝑁 ) · ( ( ( 2 · 𝑁 ) + 1 ) · 𝐹 ) ) ) |
| 130 | 99 121 129 | 3eqtr4i | ⊢ ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) = ( ( ( 3 · ( ( 2 · 𝑁 ) + 1 ) ) · ( 9 ↑ 𝑁 ) ) · 𝐹 ) |
| 131 | 130 | oveq2i | ⊢ ( 2 · ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) = ( 2 · ( ( ( 3 · ( ( 2 · 𝑁 ) + 1 ) ) · ( 9 ↑ 𝑁 ) ) · 𝐹 ) ) |
| 132 | 68 | nncni | ⊢ ( 3 ↑ 7 ) ∈ ℂ |
| 133 | 132 79 | mulcli | ⊢ ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ∈ ℂ |
| 134 | 133 59 | mulcomi | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 2 ) = ( 2 · ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) |
| 135 | 37 | nncni | ⊢ ( ( 3 · ( ( 2 · 𝑁 ) + 1 ) ) · ( 9 ↑ 𝑁 ) ) ∈ ℂ |
| 136 | 135 59 61 | mul12i | ⊢ ( ( ( 3 · ( ( 2 · 𝑁 ) + 1 ) ) · ( 9 ↑ 𝑁 ) ) · ( 2 · 𝐹 ) ) = ( 2 · ( ( ( 3 · ( ( 2 · 𝑁 ) + 1 ) ) · ( 9 ↑ 𝑁 ) ) · 𝐹 ) ) |
| 137 | 131 134 136 | 3eqtr4i | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 2 ) = ( ( ( 3 · ( ( 2 · 𝑁 ) + 1 ) ) · ( 9 ↑ 𝑁 ) ) · ( 2 · 𝐹 ) ) |
| 138 | 74 137 | breqtri | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 2 ) ≤ ( ( ( 3 · ( ( 2 · 𝑁 ) + 1 ) ) · ( 9 ↑ 𝑁 ) ) · ( 2 · 𝐹 ) ) |
| 139 | 1 30 15 37 38 39 58 64 138 | log2ublem1 | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · Σ 𝑛 ∈ ( 0 ... 𝑁 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ≤ ( 2 · 𝐺 ) |