This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for log2ub . (Contributed by Mario Carneiro, 17-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | log2ublem2.1 | |- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. sum_ n e. ( 0 ... K ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) <_ ( 2 x. B ) |
|
| log2ublem2.2 | |- B e. NN0 |
||
| log2ublem2.3 | |- F e. NN0 |
||
| log2ublem2.4 | |- N e. NN0 |
||
| log2ublem2.5 | |- ( N - 1 ) = K |
||
| log2ublem2.6 | |- ( B + F ) = G |
||
| log2ublem2.7 | |- M e. NN0 |
||
| log2ublem2.8 | |- ( M + N ) = 3 |
||
| log2ublem2.9 | |- ( ( 5 x. 7 ) x. ( 9 ^ M ) ) = ( ( ( 2 x. N ) + 1 ) x. F ) |
||
| Assertion | log2ublem2 | |- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. sum_ n e. ( 0 ... N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) <_ ( 2 x. G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | log2ublem2.1 | |- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. sum_ n e. ( 0 ... K ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) <_ ( 2 x. B ) |
|
| 2 | log2ublem2.2 | |- B e. NN0 |
|
| 3 | log2ublem2.3 | |- F e. NN0 |
|
| 4 | log2ublem2.4 | |- N e. NN0 |
|
| 5 | log2ublem2.5 | |- ( N - 1 ) = K |
|
| 6 | log2ublem2.6 | |- ( B + F ) = G |
|
| 7 | log2ublem2.7 | |- M e. NN0 |
|
| 8 | log2ublem2.8 | |- ( M + N ) = 3 |
|
| 9 | log2ublem2.9 | |- ( ( 5 x. 7 ) x. ( 9 ^ M ) ) = ( ( ( 2 x. N ) + 1 ) x. F ) |
|
| 10 | fzfid | |- ( T. -> ( 0 ... K ) e. Fin ) |
|
| 11 | elfznn0 | |- ( n e. ( 0 ... K ) -> n e. NN0 ) |
|
| 12 | 11 | adantl | |- ( ( T. /\ n e. ( 0 ... K ) ) -> n e. NN0 ) |
| 13 | 2re | |- 2 e. RR |
|
| 14 | 3nn | |- 3 e. NN |
|
| 15 | 2nn0 | |- 2 e. NN0 |
|
| 16 | nn0mulcl | |- ( ( 2 e. NN0 /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) |
|
| 17 | 15 16 | mpan | |- ( n e. NN0 -> ( 2 x. n ) e. NN0 ) |
| 18 | nn0p1nn | |- ( ( 2 x. n ) e. NN0 -> ( ( 2 x. n ) + 1 ) e. NN ) |
|
| 19 | 17 18 | syl | |- ( n e. NN0 -> ( ( 2 x. n ) + 1 ) e. NN ) |
| 20 | nnmulcl | |- ( ( 3 e. NN /\ ( ( 2 x. n ) + 1 ) e. NN ) -> ( 3 x. ( ( 2 x. n ) + 1 ) ) e. NN ) |
|
| 21 | 14 19 20 | sylancr | |- ( n e. NN0 -> ( 3 x. ( ( 2 x. n ) + 1 ) ) e. NN ) |
| 22 | 9nn | |- 9 e. NN |
|
| 23 | nnexpcl | |- ( ( 9 e. NN /\ n e. NN0 ) -> ( 9 ^ n ) e. NN ) |
|
| 24 | 22 23 | mpan | |- ( n e. NN0 -> ( 9 ^ n ) e. NN ) |
| 25 | 21 24 | nnmulcld | |- ( n e. NN0 -> ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) e. NN ) |
| 26 | nndivre | |- ( ( 2 e. RR /\ ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) e. NN ) -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR ) |
|
| 27 | 13 25 26 | sylancr | |- ( n e. NN0 -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR ) |
| 28 | 12 27 | syl | |- ( ( T. /\ n e. ( 0 ... K ) ) -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR ) |
| 29 | 10 28 | fsumrecl | |- ( T. -> sum_ n e. ( 0 ... K ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR ) |
| 30 | 29 | mptru | |- sum_ n e. ( 0 ... K ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR |
| 31 | 15 4 | nn0mulcli | |- ( 2 x. N ) e. NN0 |
| 32 | nn0p1nn | |- ( ( 2 x. N ) e. NN0 -> ( ( 2 x. N ) + 1 ) e. NN ) |
|
| 33 | 31 32 | ax-mp | |- ( ( 2 x. N ) + 1 ) e. NN |
| 34 | 14 33 | nnmulcli | |- ( 3 x. ( ( 2 x. N ) + 1 ) ) e. NN |
| 35 | nnexpcl | |- ( ( 9 e. NN /\ N e. NN0 ) -> ( 9 ^ N ) e. NN ) |
|
| 36 | 22 4 35 | mp2an | |- ( 9 ^ N ) e. NN |
| 37 | 34 36 | nnmulcli | |- ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) e. NN |
| 38 | 15 2 | nn0mulcli | |- ( 2 x. B ) e. NN0 |
| 39 | 15 3 | nn0mulcli | |- ( 2 x. F ) e. NN0 |
| 40 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 41 | 4 40 | eleqtri | |- N e. ( ZZ>= ` 0 ) |
| 42 | 41 | a1i | |- ( T. -> N e. ( ZZ>= ` 0 ) ) |
| 43 | elfznn0 | |- ( n e. ( 0 ... N ) -> n e. NN0 ) |
|
| 44 | 43 | adantl | |- ( ( T. /\ n e. ( 0 ... N ) ) -> n e. NN0 ) |
| 45 | 27 | recnd | |- ( n e. NN0 -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. CC ) |
| 46 | 44 45 | syl | |- ( ( T. /\ n e. ( 0 ... N ) ) -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. CC ) |
| 47 | oveq2 | |- ( n = N -> ( 2 x. n ) = ( 2 x. N ) ) |
|
| 48 | 47 | oveq1d | |- ( n = N -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. N ) + 1 ) ) |
| 49 | 48 | oveq2d | |- ( n = N -> ( 3 x. ( ( 2 x. n ) + 1 ) ) = ( 3 x. ( ( 2 x. N ) + 1 ) ) ) |
| 50 | oveq2 | |- ( n = N -> ( 9 ^ n ) = ( 9 ^ N ) ) |
|
| 51 | 49 50 | oveq12d | |- ( n = N -> ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) = ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) |
| 52 | 51 | oveq2d | |- ( n = N -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) = ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) |
| 53 | 42 46 52 | fsumm1 | |- ( T. -> sum_ n e. ( 0 ... N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) = ( sum_ n e. ( 0 ... ( N - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) ) |
| 54 | 53 | mptru | |- sum_ n e. ( 0 ... N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) = ( sum_ n e. ( 0 ... ( N - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) |
| 55 | 5 | oveq2i | |- ( 0 ... ( N - 1 ) ) = ( 0 ... K ) |
| 56 | 55 | sumeq1i | |- sum_ n e. ( 0 ... ( N - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) = sum_ n e. ( 0 ... K ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) |
| 57 | 56 | oveq1i | |- ( sum_ n e. ( 0 ... ( N - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) = ( sum_ n e. ( 0 ... K ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) |
| 58 | 54 57 | eqtri | |- sum_ n e. ( 0 ... N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) = ( sum_ n e. ( 0 ... K ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) |
| 59 | 2cn | |- 2 e. CC |
|
| 60 | 2 | nn0cni | |- B e. CC |
| 61 | 3 | nn0cni | |- F e. CC |
| 62 | 59 60 61 | adddii | |- ( 2 x. ( B + F ) ) = ( ( 2 x. B ) + ( 2 x. F ) ) |
| 63 | 6 | oveq2i | |- ( 2 x. ( B + F ) ) = ( 2 x. G ) |
| 64 | 62 63 | eqtr3i | |- ( ( 2 x. B ) + ( 2 x. F ) ) = ( 2 x. G ) |
| 65 | 7nn | |- 7 e. NN |
|
| 66 | 65 | nnnn0i | |- 7 e. NN0 |
| 67 | nnexpcl | |- ( ( 3 e. NN /\ 7 e. NN0 ) -> ( 3 ^ 7 ) e. NN ) |
|
| 68 | 14 66 67 | mp2an | |- ( 3 ^ 7 ) e. NN |
| 69 | 5nn | |- 5 e. NN |
|
| 70 | 69 65 | nnmulcli | |- ( 5 x. 7 ) e. NN |
| 71 | 68 70 | nnmulcli | |- ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) e. NN |
| 72 | 71 | nnrei | |- ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) e. RR |
| 73 | 72 13 | remulcli | |- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. 2 ) e. RR |
| 74 | 73 | leidi | |- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. 2 ) <_ ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. 2 ) |
| 75 | 14 | nnnn0i | |- 3 e. NN0 |
| 76 | nnexpcl | |- ( ( 9 e. NN /\ 3 e. NN0 ) -> ( 9 ^ 3 ) e. NN ) |
|
| 77 | 22 75 76 | mp2an | |- ( 9 ^ 3 ) e. NN |
| 78 | 77 | nncni | |- ( 9 ^ 3 ) e. CC |
| 79 | 70 | nncni | |- ( 5 x. 7 ) e. CC |
| 80 | 78 79 | mulcomi | |- ( ( 9 ^ 3 ) x. ( 5 x. 7 ) ) = ( ( 5 x. 7 ) x. ( 9 ^ 3 ) ) |
| 81 | 7 | nn0cni | |- M e. CC |
| 82 | 4 | nn0cni | |- N e. CC |
| 83 | 81 82 | addcomi | |- ( M + N ) = ( N + M ) |
| 84 | 8 83 | eqtr3i | |- 3 = ( N + M ) |
| 85 | 84 | oveq2i | |- ( 9 ^ 3 ) = ( 9 ^ ( N + M ) ) |
| 86 | 22 | nncni | |- 9 e. CC |
| 87 | expadd | |- ( ( 9 e. CC /\ N e. NN0 /\ M e. NN0 ) -> ( 9 ^ ( N + M ) ) = ( ( 9 ^ N ) x. ( 9 ^ M ) ) ) |
|
| 88 | 86 4 7 87 | mp3an | |- ( 9 ^ ( N + M ) ) = ( ( 9 ^ N ) x. ( 9 ^ M ) ) |
| 89 | 85 88 | eqtri | |- ( 9 ^ 3 ) = ( ( 9 ^ N ) x. ( 9 ^ M ) ) |
| 90 | 89 | oveq2i | |- ( ( 5 x. 7 ) x. ( 9 ^ 3 ) ) = ( ( 5 x. 7 ) x. ( ( 9 ^ N ) x. ( 9 ^ M ) ) ) |
| 91 | 36 | nncni | |- ( 9 ^ N ) e. CC |
| 92 | nnexpcl | |- ( ( 9 e. NN /\ M e. NN0 ) -> ( 9 ^ M ) e. NN ) |
|
| 93 | 22 7 92 | mp2an | |- ( 9 ^ M ) e. NN |
| 94 | 93 | nncni | |- ( 9 ^ M ) e. CC |
| 95 | 79 91 94 | mul12i | |- ( ( 5 x. 7 ) x. ( ( 9 ^ N ) x. ( 9 ^ M ) ) ) = ( ( 9 ^ N ) x. ( ( 5 x. 7 ) x. ( 9 ^ M ) ) ) |
| 96 | 80 90 95 | 3eqtri | |- ( ( 9 ^ 3 ) x. ( 5 x. 7 ) ) = ( ( 9 ^ N ) x. ( ( 5 x. 7 ) x. ( 9 ^ M ) ) ) |
| 97 | 9 | oveq2i | |- ( ( 9 ^ N ) x. ( ( 5 x. 7 ) x. ( 9 ^ M ) ) ) = ( ( 9 ^ N ) x. ( ( ( 2 x. N ) + 1 ) x. F ) ) |
| 98 | 96 97 | eqtri | |- ( ( 9 ^ 3 ) x. ( 5 x. 7 ) ) = ( ( 9 ^ N ) x. ( ( ( 2 x. N ) + 1 ) x. F ) ) |
| 99 | 98 | oveq2i | |- ( 3 x. ( ( 9 ^ 3 ) x. ( 5 x. 7 ) ) ) = ( 3 x. ( ( 9 ^ N ) x. ( ( ( 2 x. N ) + 1 ) x. F ) ) ) |
| 100 | df-7 | |- 7 = ( 6 + 1 ) |
|
| 101 | 100 | oveq2i | |- ( 3 ^ 7 ) = ( 3 ^ ( 6 + 1 ) ) |
| 102 | 3cn | |- 3 e. CC |
|
| 103 | 6nn0 | |- 6 e. NN0 |
|
| 104 | expp1 | |- ( ( 3 e. CC /\ 6 e. NN0 ) -> ( 3 ^ ( 6 + 1 ) ) = ( ( 3 ^ 6 ) x. 3 ) ) |
|
| 105 | 102 103 104 | mp2an | |- ( 3 ^ ( 6 + 1 ) ) = ( ( 3 ^ 6 ) x. 3 ) |
| 106 | expmul | |- ( ( 3 e. CC /\ 2 e. NN0 /\ 3 e. NN0 ) -> ( 3 ^ ( 2 x. 3 ) ) = ( ( 3 ^ 2 ) ^ 3 ) ) |
|
| 107 | 102 15 75 106 | mp3an | |- ( 3 ^ ( 2 x. 3 ) ) = ( ( 3 ^ 2 ) ^ 3 ) |
| 108 | 59 102 | mulcomi | |- ( 2 x. 3 ) = ( 3 x. 2 ) |
| 109 | 3t2e6 | |- ( 3 x. 2 ) = 6 |
|
| 110 | 108 109 | eqtri | |- ( 2 x. 3 ) = 6 |
| 111 | 110 | oveq2i | |- ( 3 ^ ( 2 x. 3 ) ) = ( 3 ^ 6 ) |
| 112 | sq3 | |- ( 3 ^ 2 ) = 9 |
|
| 113 | 112 | oveq1i | |- ( ( 3 ^ 2 ) ^ 3 ) = ( 9 ^ 3 ) |
| 114 | 107 111 113 | 3eqtr3i | |- ( 3 ^ 6 ) = ( 9 ^ 3 ) |
| 115 | 114 | oveq1i | |- ( ( 3 ^ 6 ) x. 3 ) = ( ( 9 ^ 3 ) x. 3 ) |
| 116 | 105 115 | eqtri | |- ( 3 ^ ( 6 + 1 ) ) = ( ( 9 ^ 3 ) x. 3 ) |
| 117 | 78 102 | mulcomi | |- ( ( 9 ^ 3 ) x. 3 ) = ( 3 x. ( 9 ^ 3 ) ) |
| 118 | 101 116 117 | 3eqtri | |- ( 3 ^ 7 ) = ( 3 x. ( 9 ^ 3 ) ) |
| 119 | 118 | oveq1i | |- ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) = ( ( 3 x. ( 9 ^ 3 ) ) x. ( 5 x. 7 ) ) |
| 120 | 102 78 79 | mulassi | |- ( ( 3 x. ( 9 ^ 3 ) ) x. ( 5 x. 7 ) ) = ( 3 x. ( ( 9 ^ 3 ) x. ( 5 x. 7 ) ) ) |
| 121 | 119 120 | eqtri | |- ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) = ( 3 x. ( ( 9 ^ 3 ) x. ( 5 x. 7 ) ) ) |
| 122 | 33 | nncni | |- ( ( 2 x. N ) + 1 ) e. CC |
| 123 | 102 122 91 | mul32i | |- ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) = ( ( 3 x. ( 9 ^ N ) ) x. ( ( 2 x. N ) + 1 ) ) |
| 124 | 123 | oveq1i | |- ( ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) x. F ) = ( ( ( 3 x. ( 9 ^ N ) ) x. ( ( 2 x. N ) + 1 ) ) x. F ) |
| 125 | 102 91 | mulcli | |- ( 3 x. ( 9 ^ N ) ) e. CC |
| 126 | 125 122 61 | mulassi | |- ( ( ( 3 x. ( 9 ^ N ) ) x. ( ( 2 x. N ) + 1 ) ) x. F ) = ( ( 3 x. ( 9 ^ N ) ) x. ( ( ( 2 x. N ) + 1 ) x. F ) ) |
| 127 | 122 61 | mulcli | |- ( ( ( 2 x. N ) + 1 ) x. F ) e. CC |
| 128 | 102 91 127 | mulassi | |- ( ( 3 x. ( 9 ^ N ) ) x. ( ( ( 2 x. N ) + 1 ) x. F ) ) = ( 3 x. ( ( 9 ^ N ) x. ( ( ( 2 x. N ) + 1 ) x. F ) ) ) |
| 129 | 124 126 128 | 3eqtri | |- ( ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) x. F ) = ( 3 x. ( ( 9 ^ N ) x. ( ( ( 2 x. N ) + 1 ) x. F ) ) ) |
| 130 | 99 121 129 | 3eqtr4i | |- ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) = ( ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) x. F ) |
| 131 | 130 | oveq2i | |- ( 2 x. ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) = ( 2 x. ( ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) x. F ) ) |
| 132 | 68 | nncni | |- ( 3 ^ 7 ) e. CC |
| 133 | 132 79 | mulcli | |- ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) e. CC |
| 134 | 133 59 | mulcomi | |- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. 2 ) = ( 2 x. ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) |
| 135 | 37 | nncni | |- ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) e. CC |
| 136 | 135 59 61 | mul12i | |- ( ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) x. ( 2 x. F ) ) = ( 2 x. ( ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) x. F ) ) |
| 137 | 131 134 136 | 3eqtr4i | |- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. 2 ) = ( ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) x. ( 2 x. F ) ) |
| 138 | 74 137 | breqtri | |- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. 2 ) <_ ( ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) x. ( 2 x. F ) ) |
| 139 | 1 30 15 37 38 39 58 64 138 | log2ublem1 | |- ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. sum_ n e. ( 0 ... N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) <_ ( 2 x. G ) |