This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two eventually upper bounded functions is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | o1add2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| o1add2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) | ||
| lo1add.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) | ||
| lo1add.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ) | ||
| Assertion | lo1add | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ ≤𝑂(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1add2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 2 | o1add2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) | |
| 3 | lo1add.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) | |
| 4 | lo1add.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ) | |
| 5 | reeanv | ⊢ ( ∃ 𝑚 ∈ ℝ ∃ 𝑛 ∈ ℝ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) ↔ ( ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) ) | |
| 6 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) |
| 7 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) | |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 9 | lo1dm | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) | |
| 10 | 3 9 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
| 11 | 8 10 | eqsstrrd | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → 𝐴 ⊆ ℝ ) |
| 13 | rexanre | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) ) ↔ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) ) ↔ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) ) ) |
| 15 | readdcl | ⊢ ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( 𝑚 + 𝑛 ) ∈ ℝ ) | |
| 16 | 15 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( 𝑚 + 𝑛 ) ∈ ℝ ) |
| 17 | 1 3 | lo1mptrcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 18 | 17 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 19 | 2 4 | lo1mptrcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 20 | 19 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 21 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑚 ∈ ℝ ) | |
| 22 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑛 ∈ ℝ ) | |
| 23 | le2add | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) → ( 𝐵 + 𝐶 ) ≤ ( 𝑚 + 𝑛 ) ) ) | |
| 24 | 18 20 21 22 23 | syl22anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) → ( 𝐵 + 𝐶 ) ≤ ( 𝑚 + 𝑛 ) ) ) |
| 25 | 24 | imim2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) ) → ( 𝑐 ≤ 𝑥 → ( 𝐵 + 𝐶 ) ≤ ( 𝑚 + 𝑛 ) ) ) ) |
| 26 | 25 | ralimdva | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 + 𝐶 ) ≤ ( 𝑚 + 𝑛 ) ) ) ) |
| 27 | breq2 | ⊢ ( 𝑝 = ( 𝑚 + 𝑛 ) → ( ( 𝐵 + 𝐶 ) ≤ 𝑝 ↔ ( 𝐵 + 𝐶 ) ≤ ( 𝑚 + 𝑛 ) ) ) | |
| 28 | 27 | imbi2d | ⊢ ( 𝑝 = ( 𝑚 + 𝑛 ) → ( ( 𝑐 ≤ 𝑥 → ( 𝐵 + 𝐶 ) ≤ 𝑝 ) ↔ ( 𝑐 ≤ 𝑥 → ( 𝐵 + 𝐶 ) ≤ ( 𝑚 + 𝑛 ) ) ) ) |
| 29 | 28 | ralbidv | ⊢ ( 𝑝 = ( 𝑚 + 𝑛 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 + 𝐶 ) ≤ 𝑝 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 + 𝐶 ) ≤ ( 𝑚 + 𝑛 ) ) ) ) |
| 30 | 29 | rspcev | ⊢ ( ( ( 𝑚 + 𝑛 ) ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 + 𝐶 ) ≤ ( 𝑚 + 𝑛 ) ) ) → ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 + 𝐶 ) ≤ 𝑝 ) ) |
| 31 | 16 26 30 | syl6an | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) ) → ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 + 𝐶 ) ≤ 𝑝 ) ) ) |
| 32 | 31 | reximdv | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) ) → ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 + 𝐶 ) ≤ 𝑝 ) ) ) |
| 33 | 14 32 | sylbird | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) → ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 + 𝐶 ) ≤ 𝑝 ) ) ) |
| 34 | 33 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℝ ∃ 𝑛 ∈ ℝ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) → ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 + 𝐶 ) ≤ 𝑝 ) ) ) |
| 35 | 5 34 | biimtrrid | ⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) → ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 + 𝐶 ) ≤ 𝑝 ) ) ) |
| 36 | 11 17 | ello1mpt | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑐 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
| 37 | rexcom | ⊢ ( ∃ 𝑐 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ↔ ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) | |
| 38 | 36 37 | bitrdi | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
| 39 | 11 19 | ello1mpt | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ↔ ∃ 𝑐 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) ) |
| 40 | rexcom | ⊢ ( ∃ 𝑐 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ↔ ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) | |
| 41 | 39 40 | bitrdi | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ↔ ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) ) |
| 42 | 38 41 | anbi12d | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ) ↔ ( ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) ) ) |
| 43 | 17 19 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ∈ ℝ ) |
| 44 | 11 43 | ello1mpt | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ ≤𝑂(1) ↔ ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 + 𝐶 ) ≤ 𝑝 ) ) ) |
| 45 | 35 42 44 | 3imtr4d | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ ≤𝑂(1) ) ) |
| 46 | 3 4 45 | mp2and | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ ≤𝑂(1) ) |