This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of vector subtraction in terms of addition. ( hvsubval analog.) (Contributed by NM, 31-Mar-2014) (Proof shortened by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvsubval2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lmodvsubval2.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lmodvsubval2.m | ⊢ − = ( -g ‘ 𝑊 ) | ||
| lmodvsubval2.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lmodvsubval2.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lmodvsubval2.n | ⊢ 𝑁 = ( invg ‘ 𝐹 ) | ||
| lmodvsubval2.u | ⊢ 1 = ( 1r ‘ 𝐹 ) | ||
| Assertion | lmodvsubval2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + ( ( 𝑁 ‘ 1 ) · 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsubval2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lmodvsubval2.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lmodvsubval2.m | ⊢ − = ( -g ‘ 𝑊 ) | |
| 4 | lmodvsubval2.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 5 | lmodvsubval2.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | lmodvsubval2.n | ⊢ 𝑁 = ( invg ‘ 𝐹 ) | |
| 7 | lmodvsubval2.u | ⊢ 1 = ( 1r ‘ 𝐹 ) | |
| 8 | eqid | ⊢ ( invg ‘ 𝑊 ) = ( invg ‘ 𝑊 ) | |
| 9 | 1 2 8 3 | grpsubval | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + ( ( invg ‘ 𝑊 ) ‘ 𝐵 ) ) ) |
| 10 | 9 | 3adant1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + ( ( invg ‘ 𝑊 ) ‘ 𝐵 ) ) ) |
| 11 | 1 8 4 5 7 6 | lmodvneg1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑁 ‘ 1 ) · 𝐵 ) = ( ( invg ‘ 𝑊 ) ‘ 𝐵 ) ) |
| 12 | 11 | 3adant2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑁 ‘ 1 ) · 𝐵 ) = ( ( invg ‘ 𝑊 ) ‘ 𝐵 ) ) |
| 13 | 12 | oveq2d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 + ( ( 𝑁 ‘ 1 ) · 𝐵 ) ) = ( 𝐴 + ( ( invg ‘ 𝑊 ) ‘ 𝐵 ) ) ) |
| 14 | 10 13 | eqtr4d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + ( ( 𝑁 ‘ 1 ) · 𝐵 ) ) ) |